
1

ICCO Web Services API

As of Version 11.0.230

November 4, 2025

2

Please contact Support to make sure this feature has been installed before continuing.

ICCO Web Services API (aka CreditSoft API or CollectPlus API) is a component you can install on your server that allows

remote access to specific parts of your data.

CAUTION! As with any component that is exposed to the internet, you are responsible for securing access to it by

configuring a firewall, antivirus, and intrusion prevention software. You also need to regularly review the server and

application logs. In addition, CreditSoft and CollectPlus have a Web Security Log that will log errors and suspicious

activity occurring on the web portal and the API.

The ICCO Web Services API has a SOAP Service and a REST service. They are virtually identical, with REST being a more

programmer-friendly version. Any call available on SOAP will become available on REST, unless specific security

requirements prevent us from using REST. If you find a call you need is not available you can request it and it will be

added to the next version at no cost.

SOAP URL: https://yoursitehere/WSICCOCore.svc

REST URL: https://yoursitehere/WSICCOCoreREST.svc

A simple tester is in: https://yoursitehere/WSTester.html

Security
Every web service call you make to the API requires you to always submit the API username and password in the

Authorization header separated by a : colon character and Base64 encoded (using the btoa function in java for example).

That is your first line of defense.

In addition, some calls also require a token, which is a temporary key that is obtained using a CreditSoft/CollectPlus web

user’s credentials. Those tokens require the internet username and password of an application user from Settings |

Security | Users, different from the API User. This allows you to identify who is making the changes to the records in the

audit log. This is your send line of defense.

API Users
You should define at least one API user for EACH remote vendor or application, so you can easily grant, revoke, and

define the specific access that vendor or application has to your API.

REST calls are allowed per call by system administrators per API user in Settings. REST calls will have "REST Available"

next to them in the documentation.

INTERNALONLY calls
Some API calls have an [INTERNALONLY] tag after them. For example GetMobileAPIToken has two versions:

GetMobileAPIToken[REST] and GetMobileAPIToken[REST][INTERNALONLY]

The INTERNALONLY tag means that this call can only be called from an internal server, defined in the Internal Server IP

Addresses in the API Preferences.

If you add the INTERNALONLY call to the allowed calls and don’t add the other one, then that call will only be available

to an internal API server and not from any other IP addresses. This is useful if you want some calls to only be available to

your own middle layer servers.

https://yoursitehere/WSICCOCore.svc
https://yoursitehere/WSICCOCoreREST.svc
https://yoursitehere/WSTester.html

3

GET vs POST Methods
All calls are POST calls except About, TestConnection, and catalog calls.

If you use the wrong method you will get a 405 Method Not Allowed response.

REST Calls and calls ending in J (JSON Object response)
All REST calls have two versions, the standard one which returns a serialized string in JSON, and one with the same

command name but with a “J” at the end which returns the JSON object directly.

For example: you can call either LeadDataObject_Get or LeadDataObject_GetJ. They both will do the same thing but the

first one will return the response serialized in a string, whereas the second one will return the JSON object directly

(which is easier to view and interact with when using Postman for example).

SOAP calls are all allowed once the API user is tagged to Allow SOAP Calls.

4

Tokens and token users
Some calls, for example GetDocumentsSent require that you pass a token, and not just your API User and the Lead or

Client ID.

There are two kinds of tokens: a LeadAPIToken and a standard APIToken. The LeadToken is an older version of the token

that only works on calls to lead objects. The newer APIToken allows calls that target lead, client, coapp, and other

objects.

A token is a temporary key that has to be requested using the legacy User_GetLeadAPIToken or the newer calls:

User_GetAPIToken or GetMobileAPIToken.

Working with the legacy LeadAPIToken

Requesting a LeadAPIToken

The User_GetLeadAPIToken requires you pass a UserTokenDataObject with the following properties:

<DataContract()>
Public Class UserTokenDataObject
 <DataMember()> Public UserName As String 'web username from aspnet_users/Ezy_Users
 <DataMember()> Public Password As String 'web password from aspnet_users/Ezy_Users
 <DataMember()> Public LeadID As Nullable(Of Integer) 'LeadID that the user wants to modify

End Class

Working with the new APIToken

Requesting an APIToken

In contrast, the newer WebUserTokenDataObject has the following properties:

<DataContract()>
Public Class WebUserTokenDataObject
 <DataMember()> Public UserName As String 'web username from aspnet_users/Ezy_Users
 <DataMember()> Public Password As String 'web password from aspnet_users/Ezy_Users
 <DataMember()> Public CSRecordID As Nullable(Of Integer) 'CSRecordID that the user wants to
modify
 <DataMember()> Public CSRecordType As String 'CSRecordType that the user wants to modify

End Class

Here’s sample code in JQuery to get an API token using the newer method:

 $('#btnUser_GetAPIToken').click(function () {

 var JSONObjectUser = {
 "objUser":

{
"UserName": $("#TokenUserName").val(),
"Password": $("#TokenPassword").val(),
"CSRecordID": $("#CSRecordID").val(),
"CSRecordType": $("#CSRecordType").val()
}

 };

 $.ajax({
 type: 'POST',
 url: URL + '/User_GetAPIToken',

 headers: { 'Authorization': btoa('apiuser1:myapipassword') },

Username and

internet password of

a user in Settings

Security Users

NOT THE API USER

API User username

and password from

Settings API Users

objUser has

the structure of

WebUserTokenDataObject

5

 data: JSON.stringify(JSONObjectUser),
 dataType: 'json',

 contentType: 'application/json; charset=utf-8',

 success: function (r) {

 var responsetoken = JSON.parse(r.d);
 $("#Token").val(responsetoken.Token.toString());

 },
 error: function (e) {
 $("#div1").html('ERROR');
 }
 });

 });

The response will be a TokenDataObject which includes the following properties:

<DataContract()>
Public Class TokenDataObject
 <DataMember()> Public UserName As String ' This one is the web user linked to
aspnet_users/ezy_users, not the API user
 <DataMember()> Public CSRecordID As Integer
 <DataMember()> Public CSRecordType As String
 <DataMember()> Public Token As String
 <DataMember()> Public ResponseErrorDescription As String

End Class

For more information about the TokenDataObject click here

IMPORTANT: Notice we not only pass the API user and password, but we also need to pass the internet UserName

and Password of a standard user in CreditSoft/CollectPlus that has been web-enabled by going to Tools | Internet

Access. (See screenshot below)

API Users are only used for the authorization header of the API call. Tokens require you send the username and internet

password of a standard user from CreditSoft/CollectPlus so it can tag the operation as that user in the audit logs.

In addition, we pass the CSRecordID and CSRecordType of the record we want. The CSRecordType can be: Lead, Client,

LeadCoApp, ClientCoApp

6

Screen above showing a web-enabled user. Also, make sure the user is assigned to at least ONE GROUP and ONE

DEPARTMENT.

More info about tokens here

Date and datetime formats
When passing a date via JSON you must use the standard JSON date format like this: "/Date(700000+240)/", where the

first number (700000 in the example provided) is the number of milliseconds in the server time zone starting at

midnight, January 1, 1970. The number may be negative to represent earlier times. The part that consists of "+240" in

the example is the offset in minutes. In this case it’s 240 minutes (4 hours or GMT-0400) which is the offset for Eastern

Daylight Time.

For example:

Using "/Date(0)/" would result in this date on the server 1970-01-01 00:00:00

Using "/Date(200000)/" would result in this date on the server 1970-01-01 00:03:20

This is equal to 1970-01-01 plus 200 seconds (200 seconds equals 3 minutes and 20 seconds)

You can also use a helper function like convertToWCFFormatFromStr. See this:

// Converts a date from a string like "2012-04-13 22:00:15" to a format that JSON understands
function convertToWCFFormatFromStr(date){
 let _date = new Date(date);

7

if (date.indexOf(' ') >= 0) {
 return "\/Date(" + _date.getTime() + "+" + _date.getTimezoneOffset() + ")\/";
 }
 else {
 // If we don't pass the time, then JS already performs the conversion so the time results in 00:00:00 on
the server
 return "\/Date(" + _date.getTime() + ")\/";
 }
}

var JSONObjectIssue = {
 "LeadID": $("#LeadID").val(),
 "IssueSummary": "Test from API REST",
 "IssueCategoryID": 2
 ,
 // This works, but it's hard to read (0 equals 1970-01-01). See the document ICCOWebServices11:
 //"DateCreated": "\/Date(0)\/"
 // This does not work, as we don't have that serializer
 //"DateCreated": "2012-04-23T18:25:43.511Z"
 // You can use this helper function to make it easier:
 "DateCreated": convertToWCFFormatFromStr("2012-04-23 22:10:13")
 };

Using convertToWCFFormatFromStr("2012-04-23 22:10:13") would result in the same date and time on the server (as

long as the client browser is in the same time zone as the server. If the browser is in a different time zone then the time

will be converted. This is done automatically as we pass the timezone offset when you call the function with a date and

time.

So if the browser is in Central Time and the server is in Eastern Time, and we pass convertToWCFFormatFromStr("2012-

04-23 22:10:13") then the resulting date and time on the server will be 2012-04-23 23:10:13. Because 10PM in Central

Time (what we passed) is 11PM in Eastern Time (the server time).

Keep in mind that when using the / character in JSON you must escape it first with a \ character.

So in reality, if you wanted the final string to be "/Date(0)/" then you would actually use "\/Date(0)\/" in the code. See

the code example above.

Troubleshooting
User account not found
If you get his response:

{
 "d": "{\"UserName\":null,\"CSRecordID\":0,\"CSRecordType\":null,\"Token\":null,\"ResponseErrorDescription\":\"User account not found\"}"
}

Then it means the username and password you passed are not valid. Make sure the username and password work by

logging in as that web user on the web portal. See the screenshot above where the user is web-enabled.

Response Code 415 – Unsupported Media Type

HTTPError: Response code 415 (Cannot process the message because the content type 'application/json' was

not the expected type 'application/soap+xml; charset=utf-8'.)

8

The request failed with status code: UnsupportedMediaType

This is because you are trying to use a SOAP/XML against the REST API or a JSON request against the SOAP

API.

Keep in mind the URLs for SOAP and REST are different.

The one for SOAP (using XML request) is WSICCOCore.svc

and the one for REST (using JSON request) is WSICCOCoreREST.svc

Access is denied / 401 Unauthorized

You will get an “Unauthorized” response when

The API Username does not exist

The API Password does not match the one for that API Username

The API Username does not have permission to have REST call

The call is INTERNALONLY and you call it from a server not in the list of internal servers

The permissions are set via Settings | API | API Users. You must check “Allow REST Calls” and choose the

calls you want that API User to make by adding them via the multi-select control called REST Calls Allowed.

Unauthorized calls will show in the Web Security Log if the API Username exists.

405 Method Not Allowed
You used a GET method instead of POST or vice-versa

Invalid Lead Token
You will get this in the ResponseErrorDescription when any of these occur:

• The token element is missing

• The token element exists but the Token property is empty

• The LeadID property is 0 or empty

• The Token property does not contain a Lead Token (contains a different token)

• The Token property is for a different LeadID than the LeadID element you passed in the token object

An unsecured or incorrectly secured fault was received from the other party. See the inner FaultException for

the fault code and detail.An error occurred when processing the security tokens in the message.
This means the API Username or API Password you are passing are either bad or the account is locked.

Sales Force ID Not Found
This means that the SalesForceID passed is not valid or has been added recently. If you know it is valid, please RECYCLE

the application pool of the API so it reloads the Settings tables, as SalesForce is a cached table.

Common Postman Errors

9

Mixed content error: cannot send request. The request has been blocked because it requested an insecure

HTTP resource.
If you use the Postman Desktop Agent you will get this one: Error: getaddrinfo ENOTFOUND {{base_url}}

In the Console you will notice that the variable is not being replaced: You will see something like:

http://{{base_url}}/About

This means that the Environment variables are not getting replaced. Make sure the Environment is ACTIVE. Click on

Environments and check the box to the right of the environment name.

Testing Framework
There are several ways to test calling the API.

WSTester.html - AJAX
The API site has a built-in tester form. The file is WSTester.html in the root directory.

That tester uses AJAX with Javascript to test the REST calls and displays the responses on that same page.

WSCreditSoftTester.exe
ICCO provides a Windows application called WSTester.exe. The application allows testing SOAP calls.

Postman
Postman documentation is here.

https://documenter.getpostman.com/view/31280382/2s9YeAAuTh

How to create your postman project
Create your postman account and login

Create an environment first and add the following variables:
base_url

This will be the base URL ending in WSICCOCoreREST.svc

Apiusername

This will be the API user you created in API Users in Settings

apipassword

Create a collection and configure authorization
Create a collection and then click on the collection and the Authorization tab

Select Basic Authentication

For username enter: {{apiusename}}

For password enter: {{apipassword}}

Add a request called TestConnection to the collection
Add a request and call it TestConnection

The type of the Request is GET

https://documenter.getpostman.com/view/31280382/2s9YeAAuTh

10

Notice that in the Authorization tab of the request it should default to “Inherit auth from parent”

In the Get type this: {{base_url}}/TestConnection

Click Send

After sending, you should get a 200 OK response.

In the body you should get something like this:

{

 "d": "\"This is the WSICCOCoreREST service on Monday, October 28, 2024 at 11:41:45 AM\\r\\nConnected to version:

0\\r\\nSQL Server: SQL2019INT\\r\\nDatabase: CSDATA11_TEST\""

}

Add a request called User_GetAPIToken
This is an example of a request where you will need to pass a JSON body with the parameters.

Click the collection and we are going to add additional variables that we will need for the User_GetAPIToken call.

Add the following variables:

WebUserName

The internet account username of a webuser (internal user from Security | Users – from the ezy_Users table)

WebUserPassword

The password of the webuser above

CSRecordID

A lead or client ID

CSRecordType

Lead or Client

Add a request and call it User_GetAPIToken

The type of the request is POST

In the Post type this: {{base_url}}/User_GetAPITokenJ

We are going to leave the Params tab EMPTY. The parameters will be going in a JSON object in the Body tab instead.

In the body, select type Raw JSON and type this:

{

 "objUser": {

 "UserName": "{{WebUserName}}",

11

 "Password": "{{WebUserPassword}}",

 "CSRecordID": {{CSRecordID}},

 "CSRecordType": "{{CSRecordType}}"

 }

}

Click Send

You should get something like this:

{

 "d": {

 "__type": "TokenDataObject:#ICCOCoreAPI",

 "CSRecordID": 10601,

 "CSRecordType": "Lead",

 "Remarks": null,

 "ResponseErrorDescription": null,

 "Token":

"A4GOC2nhCzZQa8ZEcqx7Lrc8TVCBIU8BVLtAYLoXKaLTRjjvFYbEQyBy7m2B1Tqm7m0CdvSybCpnvrUK12mDea488lm2z8b

+6kDUueinUF9sLbCNqD5StkEwBIFFV9wvvHyHCfT+PTgXGgHA7TsQ5f1NgSJk/qgPsKZkWn4/GGVsKope0ZxohpQ56b6h9bZ

HzN4YSHmwbM4YzmYsFFZi79uydiz4NrvNNC8IIa88EQG+MUJNtowHH0r4lA7LR7sYGBtn4vsqvOpD3I4//gQ==",

 "UserName": "yvillafweb"

 }

}

Development Framework
We recommend you use Visual Studio 2017 or Visual Studio Code.

When using Visual Studio for developing the integration please be sure to add the reference first by right clicking on the

project and selecting "Add Service Reference". You will need to temporarily allow metadata on the config file of the web

service site in order to add the reference.

Quick Links to Topics
Lead Simple Calls

12

Lead Calls with API Token

LeadClientDataObject

Finding Creditors

Lead Web Services Catalogs

Client Calls

User Related Calls

Document Info Related Calls

Outlook Add-In Calls

Mobile App Calls

13

Commonly Used Objects
LeadClientDataObject

FieldName DataType

ClientID int - only used for updating existing Lead

Salutation Mr., Mrs., Ms.

FirstName nvarchar(50)

LastName nvarchar(50)

MiddleInitial nvarchar(50)

Phone nvarchar(50) send 10 digits without
formatting

WorkPhone nvarchar(50) send 10 digits without
formatting

CellPhone nvarchar(50) send 10 digits without
formatting

DateEntered smalldatetime

User UserDataObject

This is the internet account username and
password for this lead

Email nvarchar(50)

DOB smalldatetime

SSN nvarchar(14) send 9 digits without formatting

Address1 nvarchar(50)

Address2 nvarchar(50)

City nvarchar(50)

State nvarchar(30)

Zip nvarchar(15)

UserDefined1 nvarchar(50)

UserDefined2 nvarchar(50) - See Setup for Formatting

UserDefined3 nvarchar(50) - See Setup for Formatting

UserDefined4 nvarchar(50) - See Setup for Formatting

UserDefined5 nvarchar(50) - See Setup for Formatting

UserDefined6 nvarchar(60)

UserDefined7 nvarchar(50) - See Setup for Formatting

LocationID integer - From Locations Table

EnteredBy nvarchar(20) - UserID from Ezy_Users Table

Counselor_UserID nvarchar(20) - UserID from Ezy_Users Table

HomePhoneTime nvarchar(10) - From PhoneTime Table

BankruptcyAttorney nvarchar(250) - AttorneyID from
BankruptcyAttorney Table

14

MaritalStatus int - From MaritalStatus Table

RaceID int - From Race Table

EthnicityID int - From Ethnicity Table

NumberofParents int

NumberofChildren int

RentOwn RENT/OWN

Working True/False

CollectionCL True/False

AttorneyCL True/False

Bankruptcy True/False

Notes nttext

ContactMethodID int - From ContactMethod Table

ReasonID int - From CallReason Table

Referral nvarchar(30) - From ReferralSource Table

AdvertisingID int - From Advertising Table

Employer nvarchar(25)

YearsAtJob float

Occupation nvarchar(250)

BankruptcySessionAmount money

BankruptcySessionPaymentType int - From BankruptcySessionPaymentTypes
Table

BankruptcySessionPaidStatus int - From BankruptcySessionPaidStatuses
Table

GrossIncome money

ProposalComments nvarchar(146)

CreditorComments nvarchar(146)

Language int - From Languages Table

PaymentDay smallint - 1-28

PINNumber nvarchar(8)

DriverLicense nvarchar(50)

DriverLicenseState nvarchar(30)

MaidenName nvarchar(100)

GrossIncome money

OTRDetail nvarchar(40)

Year int

DMPDebtRangeID int - From DMPDebtRange Table

TaxFilingJointly int - 0/1

NumberofChildren int

NumberofAccounts int

15

BillStatus nvarchar(20) - From BillStatus Table

CurrentMonthlyPayments money

DebtorRepaymentPlan nvarchar(20) - From DebtorRepaymentPlan
Table

EstimatedMonthlyPayment money

TypeCall nvarchar(50) - From TypeCall Table

PSUserDefined1 decimal**

PSUserDefined2 decimal**

PSUserDefined3 decimal**

PSUserDefined4 decimal**

PSUserDefined5 decimal**

PSUserDefined6 decimal**

PSUserDefined7 decimal**

PSUserDefined8 decimal**

PSUserDefined9 decimal**

UDFList an array of IDs and Values following the
structure of WSGenericResult

MilitaryStatusID int - From MilitaryStatus Table

EduLevelID int - From EduLevel Table

LeadAdminStatus nvarchar(20) - From LeadAdminStatus Table

PublicService True/False

TotDebt money

FeeAsOfDate Datetime

HouseNumber nvarchar(10) (for Equifax)

Quadrant nvarchar(2) (for Equifax)

StreetName nvarchar(50) (for Equifax)

StreetType nvarchar(20) (for Equifax)

ApartmentNumber nvarchar(10) (for Equifax)

PostQuadrant nvarchar(2) (for Equifax)

UnitDesignator nvarchar(20) (for Equifax)

UseACH True/False

NewsLetterOptIn True/False

OccupationCategoryID int - From OccupationCategory Table

ReferralPermission True/False

FamilySize Int

HomePhoneSMSEnabled Boolean – nullable

WorkPhoneSMSEnabled Boolean – nullable

MobilePhoneSMSEnabled Boolean – nullable

HouseholdHead Boolean – True/False

16

EmploymentStatus Nvarchar (50) – must be a choice in the
NFCC_EmploymentStatus table

** In order to use PSUserDefined# fields the setting found in Internet Module > Preferences called
"API_EnablePSUserDefinedFields" must be set to 1

PSUserDefinedField_GetDataType can be used to retrieve the datatype required for each field.

WSGenericResult object
<DataContract()> _
Public Class WSGenericResult
 <DataMember()> Public ID As String
 <DataMember()> Public Value As String
 <DataMember()> Public ResponseErrorDescription As String

End Class

17

WSResponse object

<DataContract()> _
Public Class WSResponse
 <DataMember()> _
 Public RecordID As Integer = 0

 <DataMember()> _
 Public ErrorDescription As String = String.Empty

 Public Sub New(ByVal Value As Integer)
 RecordID = Value
 End Sub

 Public Sub New(ByVal Message As String)
 ErrorDescription = Message
 End Sub

End Class

Connection Test Calls
To test connectivity to the web services API site you can use the following calls

About (REST Available)
This is the simplest call available. It returns a string with the version number of the API.

It does not require you send an Authorization header

 <OperationContract()>
 Function About() As String

TestConnection (REST ONLY)
This one does require the Authorization header with the API user and password.

You will need to configure the call to be allowed for that API user in Settings

 <OperationContract()>
 Public Function TestConnection() As String

Lead Related Calls
All the following Web Calls will return a WSResponse to indicate if the data was saved successfully or not. On success a
RecordID will be returned. On error, the RecordID will be 0 and an error message will be returned.

AddLead

Inserts Lead into the database using the following parameters and returns the LeadID.

 <OperationContract()>

18

 Function AddLead(ByVal FirstName As String,
ByVal LastName As String,

 ByVal MiddleInitial As String,
ByVal Phone As String,

 ByVal Fax As String,
 ByVal [Date] As String,

ByVal Email As String,
 ByVal WorkPhone As String,
 ByVal CellPhone As String,

ByVal SSN As String,
 ByVal Street As String,
 ByVal City As String,

ByVal State As String,
 ByVal Zip As String,

ByVal UserDefined1 As String,
 ByVal PreferredComunication As String,
 ByVal Gender As String,
 ByVal StartDate As Nullable(Of Date),
 ByVal ProgramScheduleID As Nullable(Of Integer),
 ByVal SalesForceID As Nullable(Of Integer),
 ByVal LocationID As Nullable(Of Integer),
 ByVal Counselor_UserID As String,

 ByVal DOB As Nullable(Of Date)) As WSResponse

FieldName DataType

FirstName nvarchar(50)

LastName nvarchar(50)

MiddleName nvarchar(50)

HomePhone nvarchar(50) send 10 digits without
formatting

Fax nvarchar(50) send 10 digits without
formatting

DateEntered smalldatetime

Email nvarchar(50)

WorkPhone nvarchar(50) send 10 digits without
formatting

Mobile nvarchar(50) send 10 digits without
formatting

SSN nvarchar(14) send 9 digits without
formatting

Address1 nvarchar(50)

City nvarchar(50)

State nvarchar(30)

Zip nvarchar(15)

UserDefined1 nvarchar(50)

PreferredCommunication Email,Fax,Mail

Gender M, F

StartDate smalldatetime

19

ProgramScheduleID integer - From ProgramSchedules Table

SalesForceID integer - From SalesForce Table

LocationID integer - From Locations Table

Counselor_UserID nvarchar(20) - UserID from Ezy_Users
Table

DOB smalldatetime

AddLeadDataObject (REST Available)

Inserts Lead into the database using the following dataobject with fields provided and returns the LeadID.

Here is the link to the LeadClientDataObject

 <OperationContract()>
 Function AddLeadDataObject(ByVal NewLead As LeadClientDataObject) As WSResponse

Below is sample code in JQuery (Many PHP and JQuery examples are provided in the package).

Notice the JSON object is defined using the fields available in the LeadClientDataObject

Notice we pass the Authorization header

And finally notice the response, being of type WSResponse, has a RecordID property which contains the ID of the lead
we just added.

 $('#btnAddLeadDataObject').click(function () {

 var JSONObjectLead = { "NewLead": { "FirstName": "Sally", "LastName": "Brown", "Email":
"myemail@test.com" } };

 $.ajax({
 type: 'POST',
 url: URL + '/AddLeadDataObject',

 headers: { 'Authorization': btoa('apiuser1:myapipassword') },

 data: JSON.stringify(JSONObjectLead),
 dataType: 'json',
 contentType: 'application/json; charset=utf-8',
 success: function (r) {

 var response = JSON.parse(r.d);
 $("#LeadID").val(response.RecordID.toString());

 },
 error: function (e) {
 $("#div1").html('ERROR');
 }
 });

 });

AddLeadCoApp (REST Available)

Adds CoApp to existing Lead using the following parameters and returns the CoappID
 <OperationContract()>
 Function AddLeadCoApp(ByVal LeadID As Integer, ByVal CoAppFirstName As String,

20

 ByVal CoAppLastName As String,
 ByVal CoAppSSN As String, ByVal CoAppEmail As String,
 ByVal IsSpouse As Boolean,
 ByVal RelationShip As String,
 ByVal CoDOB As Nullable(Of Date),
 ByVal CoGender As String,
 Optional ByVal CoAppEmployed As Boolean = False,
 Optional ByVal CoAppEmployer As String = Nothing,
 Optional ByVal CoAppHomePhone As String = Nothing,
 Optional ByVal CoAppWorkPhone As String = Nothing,

 Optional ByVal CoAppOtherPhone As String = Nothing) As WSResponse

FieldName DataType

LeadID int - must exist in database

CoAppFirst nvarchar(50)

CoAppLast nvarchar(50)

CoAppSSN nvarchar(14) send 9 digits without
formatting

CoAppEmail nvarchar(50)

IsSpouse True/False

Relationship nvarchar(20) - From RelationshipTypes
Table

CoDOB smalldatetime

CoGender M,F

CoappEmployed True/False

CoAppEmployer nvarchar(30)

CoAppHomePhone nvarchar(50) send 10 digits without
formatting

CoAppWorkPhone nvarchar(50) send 10 digits without
formatting

CoAppOtherPhone nvarchar(50) send 10 digits without
formatting

AddLeadContactDataObject

Adds Contact to existing Lead using the following parameters and returns the ClientContactID26541
 <OperationContract()>
 Function AddLeadContactDataObject(ByVal NewLeadContact As ClientContactDataObject) As WSResponse

FieldName DataType

LeadID int - must exist in database

21

ContactFirst nvarchar(30)

ContactLast nvarchar(30)

ContactMiddleName nvarchar(1)

ContactSSN nvarchar(14) send 9 digits without
formatting

ContactDOB smalldatetime

ContactAge smallint

ContactSex M,F

ContactOccupation nvarchar(20)

CoAppEmployer nvarchar(30)

ContactNetIncome money

ContactHomePhone nvarchar(50) send 10 digits without
formatting

ContactWorkPhone nvarchar(50) send 10 digits without
formatting

ContactOtherPhone nvarchar(50) send 10 digits without
formatting

ContactAddress1 nvarchar(100)

ContactAddress2 nvarchar(50)

ContactCity nvarchar(50)

ContactState nvarchar(30)

ContactZIP nvarchar(15)

Relationship nvarchar(20) - From RelationshipTypes
Table

ContactEmail nvarchar(50)

ContactMarital nvarchar(10)

ContactYearsAtJob int

ContactNotes ntext

ContactDepartment nvarchar(50)

ContactTitle nvarchar(50)

ContactHomePhoneCommunicationPreferred int - 0/1

ContactHomePhoneDoNotUse int - 0/1

ContactWorkPhoneCommunicationPreferred int - 0/1

ContactWorkPhoneDoNotUse int - 0/1

ContactOtherPhoneCommunicationPreferred int - 0/1

ContactOtherPhoneDoNotUse int - 0/1

ContactHomePhoneTime nvarchar(10) - From PhoneTime Table

ContactWorkPhoneTime nvarchar(10) - From PhoneTime Table

ContactOtherPhoneTime nvarchar(10) - From PhoneTime Table

ContactHomePhoneSMSEnabled int - 0/1

22

ContactWorkPhoneSMSEnabled int - 0/1

ContactOtherPhoneSMSEnabled int - 0/1

ContactHomePhoneType nvarchar(10) - From PhoneType Table

ContactWorkPhoneType nvarchar(10) - From PhoneType Table

ContactOtherPhoneType nvarchar(10) - From PhoneType Table

ContactAddress1CommunicationDoNotUse int - 0/1

ContactAddress1CommunicationPreferred int - 0/1

ContactEmailCommunicationPreferred int - 0/1

ContactEmailCommunicationDoNotUse int - 0/1

IsDefaultContact int - 0/1

ContactUserDefined1 nvarchar(50) - See Setup for Formatting

ContactUserDefined2 nvarchar(50) - See Setup for Formatting

ContactUserDefined3 nvarchar(50) - See Setup for Formatting

AddLeadBankAccount (REST Available)

Adds Lead Bank Account to existing Lead using the following parameters and returns the LeadACHBankAccountID
 <OperationContract()>
 Function AddLeadBankAccount(ByVal LeadID As Integer,

ByVal BankAccountType As String,
 ByVal BankName As String,
 ByVal BankRoutingNumber As String,

ByVal BankAccountNumber As String) As WSResponse

FieldName DataType

LeadID int - must exist in database

AccType nvarchar(10) Checking/Savings

BankName nvarchar(30) - Leave empty to auto populate
from CreditSoft Federal ACH Directory
Info

ABA nvarchar(9)

BankAccountNumber nvarchar(20)

AddLeadAccount (REST Available)

Adds Lead Account to existing Lead using the following parameters and returns the ClientCredID. Before adding
accounts an Insert/Default CreditorID must be specified in Settings. A quick note will be added for the account with the
Creditor Name and Address Info.
 <OperationContract()>
 Function AddLeadAccount(ByVal LeadID As Integer,
 ByVal OriginalDebt As Nullable(Of Decimal),

ByVal OriginalAPR As Nullable(Of Decimal),
 ByVal OriginalMonthly As Nullable(Of Decimal),

23

ByVal DefaultMonthlyPayment As Nullable(Of Decimal),
 ByVal CreditorName As String,

ByVal CreditorAccountNumber As String,
 ByVal CreditorStreet As String,

ByVal CreditorState As String,
 ByVal CreditorZip As String,

ByVal CreditorPhone As String,
 ByVal CreditorPhoneExt As String,
 ByVal DelinquencyStatus As String,
 ByVal CreditorID As Nullable(Of Integer),
 ByVal CreditorCity As String,
 Optional ByVal CallToAction As Boolean = False,
 Optional ByVal HardShip As Boolean = False,
 Optional ByVal MinimumAcceptedByCreditor As Nullable(Of Decimal) = Nothing,
 Optional ByVal AccountStatus As String = Nothing
) As WSResponse

FieldName DataType

LeadID int - must exist in database

OrigDebt money

InitialAPR float send as decimal

OrigMonthly money

DefMonthlyPayment money

CreditorName nvarchar(50)

AccountNumber nvarchar(50)

CreditorStreet nvarchar(50)

CreditorState nvarchar(30)

CreditorZip nvarchar(15)

CreditorPhone nvarchar(50)

CreditorExt nvarchar(10)

DelinquencyStatus nvarchar(50) as specified in the Settings

CreditorID int - must exist in database. Pass nothing
to use the Generic Default CreditorID.

CreditorCity nvarchar(50)

CallToAction True/False

HardShip True/False

MinimumAcceptedByCreditor money

AccountStatus nvarchar(20) - must exist in the database -
Pass nothing to use the Default Account
Status

AddLeadBudget (REST Available)

Adds Lead Budget Item to existing Lead using the following parameters and returns the BudgetScenarioDetailID.
Categories\SubCategories must be predefined in Settings
 <OperationContract()>
 Function AddLeadBudget(ByVal LeadID As Integer,
 ByVal BudgetCategory As String,
 ByVal BudgetSubcategory As String,

24

 ByVal BudgetAmount As Decimal) As WSResponse

FieldName DataType

LeadID int - must exist in database

Category nvarchar(50)

SubCategory nvarchar(50)

Amount money

AddLeadIncome (REST Available)

Adds Lead Income Item to existing Lead using the following parameters and returns the IncomeScenarioD. Categories
must be predefined in Settings
 <OperationContract()>
 Function AddLeadIncome(ByVal LeadID As Integer,
 ByVal IncomeCategory As String,
 ByVal IncomeAmount As Decimal) As WSResponse

FieldName DataType

LeadID int - must exist in database

IncomeName nvarchar(50)

IncomeValue money

AddLeadAsset (REST Available)

Adds Lead Income Item to existing Lead using the following parameters and returns the AssetScenarioD. Categories
must be predefined in Settings
 <OperationContract()>
 Function AddLeadAsset(ByVal LeadID As Integer,
 ByVal AssetName As String,
 ByVal AssetValue As Decimal) As WSResponse

FieldName DataType

LeadID int - must exist in database

AssetName nvarchar(50)

AssetValue money

AddLeadLiability (REST Available)

Adds Lead Income Item to existing Lead using the following parameters and returns the LiabilityScenarioD. Categories
must be predefined in Settings
 <OperationContract()>
 Function AddLeadLiability(ByVal LeadID As Integer,
 ByVal LiabilityName As String,

25

 ByVal LiabilityValue As Decimal) As WSResponse

FieldName DataType

LeadID int - must exist in database

LiabilityName nvarchar(50)

LiabilityValue money

MarkOriginalBudgetScenarioAsActual (REST Available)

Marks the scenario as the Actual Budget Scenario - this should be called after all Expenses, Income, Assets, and
Liabilities have been sent. Will return the BudgetScenarioMasterID.
 <OperationContract()>
 Function MarkOriginalBudgetScenarioAsActual(ByVal LeadID As Integer) As WSResponse

FieldName DataType

LeadID int - must exist in database

AddSalesForce

Adds Sales Agents to CreditSoft using the following parameters and returns the SalesForceID. The WorksFor ID would
be already in the database and the SalesmanType will be automatically set based on the WorksFor.
 <OperationContract()>
 Function AddSalesForce(ByVal FirstName As String,
 ByVal LastName As String,
 ByVal Phone As String,
 ByVal PhoneExtension As String,
 ByVal Email As String,
 ByVal UserDefined1 As String,
 ByVal WorksFor As Nullable(Of Integer)) As WSResponse

FieldName DataType

FirstName nvarchar(50)

LastName nvarchar(50)

Phone nvarchar(25)

PhoneExtension nvarchar(10)

Email nvarchar(50)

UserDefined1 nvarchar(15)

WorksFor int - must exist in database currently

AddLeadIssue (REST Available)

Creates a Task for the Lead for the specified category. If no categoryid is passed the Default Category will be used. The
User and Department Assignment will follow the Task Category Setup.
 <OperationContract()>

26

 Function AddLeadIssue(ByVal LeadID As Integer, ByVal IssueSummary As String, ByVal
IssueCategoryID As Nullable(Of Integer), Optional ByVal DateCreated As Nullable(Of Date) = Nothing,
Optional ByVal Status As String = Nothing) As WSResponse

FieldName DataType

LeadID int - must exist in database

IssueSummary nvarchar(2000)

IssueCategoryID int - from IssueCategories Table

DateCreated datetime

Status nvarchar(20) - must exist in the database -
Pass nothing to use the Default Task
Status

AddIssueNote

Adds a Task Note to a Task and attaches a Document if specified.
 <OperationContract()>
 Function AddIssueNote(ByVal IssueID As Integer, ByVal NoteDate As Date, ByVal Notes As String,
Optional ByVal DocumentName As String = Nothing, Optional ByVal Document As Byte() = Nothing, Optional
DocumentType As String = Nothing) As WSResponse

26944

FieldName DataType

IssueID int - must exist in database (see
AddLeadIssue call)

NoteDate smalldatetime

Notes ntext

DocumentName nvarchar(1024) - Name of Actual file
including the extension

Document This will be a byte array (Byte()) that will
contain the contents of the file to be
attached to the Task.

AttachDocumentToIssue (REST Available)

Adds a Task Note to a Task and attaches the Document specified.
 <OperationContract()>
 Function AttachDocumentToIssue(ByVal IssueID As Integer, ByVal DocumentName As String, ByVal Document
As Byte(), Optional DocumentType As String = Nothing) As WSResponse

FieldName DataType

IssueID int - must exist in database (see
AddLeadIssue call)

DocumentName nvarchar(1024) - Name of Actual file
including the extension

27

Document This will be a byte array (Byte()) that will
contain the contents of the file to be
attached to the Task.

AddValidatedGlobalAccountToLead

Adds a processing account to the lead that was previously assigned, enrolled and validated at Global. The account will
be added and then re-exported to Global to update the clientid.
 <OperationContract()>
 Function AddValidatedGlobalAccountToLead(ByVal _
 LeadClientID As Integer,
 ByVal ABA As String,
 ByVal AccountNumber As String,
 ByVal DateCreated As DateTime,
 ByVal DateAssigned As DateTime,
 ByVal PIN As String,
 ByVal PolicyGroupID As Integer) As WSResponse

28715

FieldName DataType

LeadClientID int - must exist in database

ABA nvarchar(9) - ABA for the Global Acct

AccountNumber nvarchar(20) - Global Account #

DateCreated datetime - Date Account Created for
assignment by Global

DateAssigned datetime - Date Account Assigned by
vendor

PIN nvarchar(4) - PIN for the Global Acct

PolicyGroupID int - Policy Group with Global for the client

AddLeadCreditCard (REST Available)

Adds a credit card for processing credit card payments using the following dataobject with fields provided to an existing
lead. 30728
 <OperationContract()>
 Function AddLeadCreditCard(ByVal NewLeadCC As DebtorCCDataObject) As WSResponse

FieldName DataType

LeadClientID int - must exist in database

CCFirstName nvarchar(50) - Don't specify in object to use
the Lead's Info

CCLastName nvarchar(50) - Don't specify in object to use
the Lead's Info

CCAddress1 nvarchar(50) - Don't specify in object to use
the Lead's Info

28

CCAddress2 nvarchar(50) - Don't specify in object to use
the Lead's Info

CCCity nvarchar(50) - Don't specify in object to use
the Lead's Info

CCState nvarchar(30) - Don't specify in object to use
the Lead's Info

CCZip nvarchar(15) - Don't specify in object to use
the Lead's Info

CCNumber nvarchar(100)

CCExpirationMonth int

CCExpirationYear int

CCType int - 0 Visa, 2 Mastercard, 3 Amex, 4
Discover

CCVerification nvarchar(10)

CCAccountName nvarchar(20) - Alias used in CreditSoft to
refer to the account for scheduling
purposes - Don't specify in object to use
the database default value

AttachDocumentToLead (REST Available)
Adds a Task Note to a Lead and attaches the Document specified.

<OperationContract()>
 Public Function AttachDocumentToLead(ByVal LeadID As Integer, ByVal DocumentName As String,

 ByVal Document As Byte(), Optional DocumentType As String = Nothing) As String28715

FieldName DataType

LeadID int - must exist in database

DocumentName String Name of Actual file including the
extension

Document String This will be a byte array (Byte()) that
will contain the contents of the file to be
attached to the Task.

DocumentType String Refers to the DocumentTypes enum
– can be null

29

Lead Calls with API Token

Some calls require that you pass either a LeadAPIToken or a new standard APIToken, as mentioned in the section at
the top called Tokens and token users.

OBTAINING TOKENS
Below are the calls you can use to retrieve the different types of tokens

To obtain a Lead API Token use User_GetLeadAPIToken.

User_GetLeadAPIToken

Returns a LeadTokenDataObject for the UserTokenDataObject specified

INPUT: UserTokenDataObject

OUTPUT: LeadTokenDataObject

To get a new standard API Token use User_GetAPIToken.

User_GetAPIToken
Returns a standard TokenDataObject for the WebUserTokenDataObject specified. The token is valid only for the

username passed, and expires based on the Token Expiration in Minutes defined in Settings.

 <OperationContract()>
 Function User_GetAPIToken(ByVal objUser As WebUserTokenDataObject) As TokenDataObject

INPUT: WebUserTokenDataObject

Example JSON body with Postman variable bookmarks:

{

 "objUser": {

 "UserName": "{{WebUserName}}",

 "Password": "{{WebUserPassword}}",

 "CSRecordID": {{CSRecordID}},

 "CSRecordType": "{{CSRecordType}}"

 }

}

OUTPUT: TokenDataObject

30

Example JSON result:

{

 "d": {

 "__type": "TokenDataObject:#ICCOCoreAPI",

 "CSRecordID": 10601,

 "CSRecordType": "Lead",

 "Remarks": null,

 "ResponseErrorDescription": null,

 "Token":

"A4GOC2nhCzZa8ZEcqx7Lrc8TVCBIU8BVLtAYLoXKaIoTjZoEEm5pbwB487anebwWhLMrMRe0JwfuaxvJRTydQAEDg+b1YNa

W1ShF9GBuaNSEtise7B65Vmn4wXuTbVRIWViicYzFTf7+kR+3lO6AQ1RAovj6gQIWQkmB4OpzHIDcHp7/JxkP5mxQaOzi+4g

Y4TtelZAPyjrHJ2wm9FIg4YcpSmqiQDYjrTluwPP9D/E8Y97KNpI9RSbf92wmg1jfTftYuBfT58nHs4or2jw==",

 "UserName": "testleaduser"

 }

}

Another way to get a token for a lead is to know the internet username and password of the lead. This call should be
used only by the lead (from a mobile app for example where the lead is entering their own credentials). You should
exercise extreme caution if you ever cache or store a user’s credentials.

Lead_GetAPIToken

Returns the LeadTokenDataObject for the UserDataObject specified

INPUT: UserDataObject with lead’s internet credentials

OUTPUT: LeadTokenDataObject

Objects used for authentication and tokens
Below are all the input/output objects used on the calls above to obtain tokens.

Objects used to request and obtain tokens

UserDataObject

FieldName DataType

Username nvarchar(256)

Password nvarchar(128)

31

<DataContract()> _
Public Class UserDataObject
 <DataMember()> Public UserName As String
 <DataMember()> Public Password As String

End Class

UserTokenDataObject

Username and Password refer to the internet username and password of a web-enabled user - see User Setup in
Settings

FieldName DataType

Username nvarchar(256)

Password nvarchar(128)

LeadID Integer

<DataContract()>
Public Class UserTokenDataObject
 <DataMember()> Public UserName As String 'web username from aspnet_users/Ezy_Users, NOT API
 <DataMember()> Public Password As String 'web password from aspnet_users/Ezy_Users
 <DataMember()> Public LeadID As Nullable(Of Integer) 'LeadID that the user wants to modify

End Class

WebUserTokenDataObject

<DataContract()>
Public Class WebUserTokenDataObject
 <DataMember()> Public UserName As String 'web username from aspnet_users/Ezy_Users, NOT API
 <DataMember()> Public Password As String 'web password from aspnet_users/Ezy_Users
 <DataMember()> Public CSRecordID As Nullable(Of Integer) 'CSRecordID that the user wants to
modify
 <DataMember()> Public CSRecordType As String 'CSRecordType that the user wants to modify

End Class

Token objects obtained after requesting them
LeadTokenDataObject

<DataContract()> _
Public Class LeadTokenDataObject
 <DataMember()> Public LeadID As Integer
 <DataMember()> Public Token As String
 <DataMember()> Public ResponseErrorDescription As String

End Class

TokenDataObject

<DataContract()>
Public Class TokenDataObject

32

 <DataMember()> Public UserName As String ' This one is the web user linked to
aspnet_users/ezy_users, not the API user
 <DataMember()> Public CSRecordID As Integer
 <DataMember()> Public CSRecordType As String
 <DataMember()> Public Token As String
 <DataMember()> Public ResponseErrorDescription As String

 Public Sub New()
 End Sub

End Class

Example of a TokenDataObject in JSON returned by User_GetAPITokenJ

{
 "UserName": "yvillafweb",
 "CSRecordID": 10589,
 "CSRecordType": "Lead",
 "Token":
"A4GOC2nhCzZQa8ZEcqx7Lrc8TVCBIU8BVLtAYoXKaLYa8Ajez3PDMFYq1kPGUkvVFqUiY55b7Biu5sqP9tmgXEN64whs
SAGbqX/wGBI/hOm00FOhhgRXwZVZuA81Sk6yLOCABiQsGB237/isa/9M18Zvn7JUWxFuhvymyeRouadX99rd7EW4VpwtA
cvlMaMLpOW0LTq4EUVSTf5pr39PB2MlIn/FTJKgsS7ctQsR9UtjvG+cUlH+pi46YIBq3tS/YhBlQAb1QM0fYAi+n3g=="
,
 "ResponseErrorDescription": null
}

When passing the token to an API (for example RequestCreditReportXML3) you would use it like this:

{ “Token” :

{
 "UserName": "yvillafweb",
 "CSRecordID": 10589,
 "CSRecordType": "Lead",
 "Token":
"A4GOC2nhCzZQa8ZEcqx7Lrc8TVCBIU8BVLAYLoXKaLYaAjez3PDMFYq1kPGUkvVFqUiY55b7Biu5sqP9tmgXEN
64whsSAGbqX/wGBI/hOm00FOhhgRXwZVuA81Sk6yLOCBiQsGBJ237/isa/9M18Zvn7JUWxFuhvymyeRouadX99r
d7EW4VpwtAcvlMaMLpOW0LTq4EUVSTf5pr39PB2MlIn/FTJKgsS7cQR9UtjvG+cUlH+mpi46YIBq3tS/YhBlQAb
1QM0fYAi+n3g=="
}

}

Another example, using it in GetStoredDocumentList after obtaining the token from GetMobileAPIToken:

{ "Token":

 {

 "__type": "TokenDataObject:#ICCOCoreAPI",

 "CSRecordID": 10559,

 "CSRecordType": "Client",

 "Remarks": null,

 "ResponseErrorDescription": null,

33

 "Token":
"A4GOC2nhCzZQa8ZEcqx7Lrc8TVCBIUBVLtAYLoXKJEtoO1Q2wyda5PF+rHIHI7xdi61CNqE7ZuDFOGVg8g/W7wV4U
zAEHwZ0Nd0d1gQHnsDwLk1Z+6c0R7XY5WNdKqzRi0g9GlaNIDRQbyhtVD7H0L0j0T/g76j0/f/l7GNJXsT27moWbZ3/dr
pjzsW1Sg6Gu7NRFiDF4dPQQYxJjMuMZM81qFfhndpNTK0HpwRjtjvZ5UslTMrRBV03f3kk+pUqRoOUmsmr0wcR+SNA
==",

 "UserName": "Rodrigo"

 }

}

TOKENIZED CALLS
NOTE: All the Web Calls will return a ResponseErrorDescription property to indicate if the data was saved
successfully or not. If the ResponseErrorDescription property is empty then the call succeeded.

LeadDataObject_Set, LeadDataObject_Get, LeadDataObject_Set2 & LeadDataObject_Get2

The LeadDataObject_Set and LeadDataObject_Get calls are for a lead updating itself and uses the
LeadTokenDataObject.

The LeadDataObject_Set2 and LeadDataObject_Get2 calls are for a web user updating a lead and uses the
TokenDataObject.

The LeadDataObject_Get will retrieve the lead specified in the LeadToken.LeadID

LeadDataObject_Get2 will retrieve the lead specified in the Token.CSRecordID (Token.CSRecordType must be “Lead”)

When adding or updating a lead, we do not use the LeadToken.LeadID or Token.CSRecordID/CSRecordType. We only
look at the LeadClientDataObject.ClientID property to identify which lead to add/update.

The LeadDataObject_Set2 will ADD a new lead if the LeadClientDataObject object has a ClientID of 0 or
negative.

The LeadDataObject_Set2 will UPDATE an existing lead if the LeadClientDataObject object has a ClientID
greater than 0. It will update the lead based on the LeadClientDataObject.ClientID property, not the Token.CSRecordID.

Best practices:

Before calling LeadDataObject_Set or LeadDataObject_Set2 to UPDATE, you should first call LeadDataObject_Get or
LeadDataObject_Get2 to retrieve a current version of the lead object. Then modify the field(s) and pass that object to
LeadDataObject_Set/LeadDataObject_Set2 to update the database.

LeadDataObject_Set [REST Available only with the J version]

Adds or updates a Lead. To create a new Lead the First Name, Last Name, Email, Username, and Password are all
required.
 <OperationContract()>
 Function LeadDataObject_Set(ByVal LeadToken As LeadTokenDataObject, ByVal Lead As
LeadClientDataObject) As LeadTokenDataObject

34

INPUT: LeadTokenDataObject, LeadClientDataObject

OUTPUT: LeadTokenDataObject

The LeadTokenDataObject returned is the token the lead can use to update itself after the record has been added.

LeadDataObject_Get [REST Available only with the J version]
Returns Lead information

 <OperationContract()>
 Function LeadDataObject_Get(ByVal LeadToken As LeadTokenDataObject) As LeadClientDataObject

INPUT: LeadTokenDataObject

OUTPUT: LeadClientDataObject

LeadDataObject_Set2 [REST Available only with the J version]

A web user adds or updates a Lead.

To create a new Lead the First Name, Last Name, Email, Username are all required. The Password will be generated
randomly and sent to the email associated with the lead.

<OperationContract()>
Function LeadDataObject_Set2(ByVal Token As TokenDataObject, ByVal Lead As LeadClientDataObject)

As WSResponse

INPUT: TokenDataObject, LeadClientDataObject

OUTPUT: WSResponse

LeadDataObject_Get2 [REST Available only with the J version]
A web user requests Lead information

<OperationContract()>
Function LeadDataObject_Get2(ByVal Token As TokenDataObject) As LeadClientDataObject

INPUT: TokenDataObject

OUTPUT: LeadClientDataObject

LeadQuickQuestion_Set

Updates the Bill Status and DMPReasons for the Lead. A valid LeadTokenDataObject is required

All DMPReasons should be sent, even when doing an update, as the service will delete any existing reasons.
 <OperationContract()>
 Function LeadQuickQuestions_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadQuickQuestions
As LeadQuickQuestionsDataObject) As LeadQuickQuestionsDataObject

35

LeadQuickQuestions_Get

Returns the data stored for the following dataobject. A valid LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadQuickQuestions_Get(ByVal LeadToken As LeadTokenDataObject) As
LeadQuickQuestionsDataObject

LeadQuickQuestionsDataObject

FieldName DataType

DebtorBillStatus nvarchar(20) - From DebtorBillStatus Catalog

DMPReason Collection of
LeadClientDMPReasonDataObject

LeadClientDMPReasonDataObject

FieldName DataType

DMPReason nvarchar(50) - From DMPReasons Catalog

LeadAccount_Set (REST Available)

Adds/updates a collection of accounts to an existing Lead using the following LeadAccountDataObject. A valid
LeadTokenDataObject is required. Before adding accounts a Insert/Default CreditorID must be specified in Settings.
 <OperationContract()>
 Function LeadAccount_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadAccounts As
LeadAccountDataObject()) As LeadAccountDataObject()

LeadAccount_GetList (REST Available)

Returns the data stored for the following dataobject. A valid LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadAccount_GetList(ByVal LeadToken As LeadTokenDataObject) As LeadAccountDataObject()

DeleteLeadAccount_Set

Deletes the specified account. Returns a WSGenericResult.
<OperationContract()>
Function DeleteLeadAccount_Set(ByVal LeadToken As LeadTokenDataObject, ByVal ClientCredID As
Integer) As WSGenericResult

LeadAccountDataObject

FieldName DataType

ClientCredID Int - Unique ID for the specific account - must
be specified when sending updates

AccountNumber nvarchar(50)

36

DebtType nvarchar(50) - From DebtTypes Catalog

Balance money

OrigMonthly money

InitialAPR float send as decimal

DelinquencyStatus nvarchar(50) - From DelinquencyStatus
Catalog

CreditorID int - From CreditorsForEnrollment Catalog

CreditorName nvarchar(50) -Should be nothing when
passing a CreditorID or if no CreditorID is
passed the Generic Creditor will be used and
the name will be stored for user to see in
CreditSoft

DefMonthlyPayment money - to have the system calculate the
payment pass nothing or 0.

CreditorStreet nvarchar(50)

CreditorCity nvarchar(50)

CreditorState nvarchar(30)

CreditorZip nvarchar(15)

CreditorPhone nvarchar(50)

CreditorPhoneExt nvarchar(10)

CallToAction True/False

HardShip True/False

MinimumAcceptedByCreditor True/False

AccountStatus nvarchar(20) - must exist in the database -
Pass nothing to use the Default Account
Status

UserDefined1 nvarchar(50)

UserDefined2 nvarchar(50)

UserDefined3 nvarchar(50)

CoAppID Int - should be the CoAppID for the account
holder

JointAccount True/False

CSPTier1 True/False

CSPTier2 True/False

CSPTier3 True/False

EstimatedProgramAmountDue_Get

Returns the program payment for a specified Lead. A valid LeadTokenDataObject is required.
 <OperationContract()>
 Function EstimatedProgramAmountDue_Get(ByVal LeadToken As LeadTokenDataObject) As Nullable(Of
Decimal)

37

RetrieveMyInfo_Set

Updates the DOB and SSN for a specified Lead and creates CoApp or Updates specified CoApp. When adding/updating
a CoApp the First Name and Last Name will be required. A valid LeadTokenDataObject is required.
 <OperationContract()>
 Function RetrieveMyInfo_Set(ByVal LeadToken As LeadTokenDataObject, ByVal MyInformation As
MyInformationDataObject) As MyInformationDataObject

RetrieveMyInfo_Get

Returns the data stored for the following dataobject. A valid LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function RetrieveMyInfo_Get(ByVal LeadToken As LeadTokenDataObject) As MyInformationDataObject

MyInformationDataObject

FieldName DataType

DOB smalldatetime

SSN nvarchar(14) send 9 digits without formatting

CoApp CoAppsDataObject

CoAppsDataObject

FieldName DataType

CoAppID Int - Unique ID for the specific coapp- must
be specified when sending updates

CoAppFirst nvarchar(50)

CoAppLast nvarchar(50)

CoAppDOB smalldatetime

CoAppSSN nvarchar(14) send 9 digits without formatting

LeadCoApp_Delete

Requires a LeadToken and CoAppID and returns a WSGenericResult

It will only allow deletes if the coapp is not linked to any accounts, bank accounts, or credit reports.
 <OperationContract()>
 Function LeadCoApp_Delete(ByVal LeadToken As LeadTokenDataObject, ByVal CoAppID As Integer) As
WSGenericResult

38

Lead_ccProgram_Get (REST Available)

Returns the before and after program comparison for a specified Lead. A valid LeadTokenDataObject is required. If
either the before or after forecast will not payoff all debts then one of the following message will appear in the
ResponseErrorDescription and no program comparison info will be returned 30390

• Before program will never payoff

• Proposed program will never payoff

• None of the programs will ever payoff

• Unexpected exception has occurred

 <OperationContract()>
 Function Lead_ccProgram_Get(ByVal LeadToken As LeadTokenDataObject) As Lead_ccProgram_Get_Result

Lead_ccProgram_Get_Result

FieldName DataType

Before_MonthlyPaymentTotal Before DMP program Monthly Payment Total

Before_NumberOfMonths Before DMP program - # of months to payoff

Before_TotalAmountPaid Before DMP program - Total amount paid to
debts to payoff

Program_MonthlyPaymentTotal On DMP program Monthly Payment Total

Program_NumberOfMonths On DMP program - # of months to payoff

Program_TotalAmountPaid On DMP program - Total amount paid to
debts to payoff

LeadDMPReason_Get (REST Available)

Returns the list of selected DMP Reasons for a Lead.. A valid LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadDMPReason_Get(ByVal LeadToken As LeadTokenDataObject) As
LeadClientDMPReasonDataObject()

LeadDMPReason_Set (REST Available)

Updates a collection of DMP reasons for a Lead using the following LeadClientDMPReasonDataObject. A valid
LeadTokenDataObject is required.
 <OperationContract()>
 Function LeadDMPReason_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadDMPReasons As
LeadClientDMPReasonDataObject()) As LeadClientDMPReasonDataObject()

LeadDMPReason_Delete

Deletes the DMP Reason specified. LeadClientDMPReasonID and LeadToken are required.
 <OperationContract()>
 Function LeadDMPReason_Delete(ByVal LeadToken As LeadTokenDataObject, ByVal
LeadClientDMPReasonID As Integer) As WSGenericResult

39

LeadClientDMPReasonDataObject

FieldName DataType

DMPReason From DMPReasons Catalog

GetLeadWebSignInLink

Returns the WSGenericResult dataobject which returns the LeadID as ID and the URL String as the Value. A valid
UserDataObject is required which is the Lead's Username and Password. This would be only used by those who have
their own landing marketing pages and then submit the lead and then want the Lead to continue within the Creditsoft
Web Interface. The password expiration is reset to 3 days.

** Security Warning - if using this in an email if another user receives the email other than the attended recipient
then that user would now have access to their information.
 <OperationContract()>
 Function GetLeadWebSignInLink(ByVal objUser As UserDataObject) As WSGenericResult

LEAD ACH CALLS

The following ACH calls will use the maximum ACH Restriction specified in Security Groups as the rule for how close an
ACH can be scheduled for

LeadACHGroup_Get

Returns the list of Recurring ACH Setup for a Lead. A valid LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadACHGroup_Get(ByVal LeadToken As LeadTokenDataObject) As LeadACHGroupObject()

LeadACHGroup_Set

Updates a collection of Recurring ACH Setup for a Lead using the following LeadACHGroupObject. A valid
LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadACHGroup_Get(ByVal LeadToken As LeadTokenDataObject) As LeadACHGroupObject()

LeadACHGroup_Delete

Deletes a specific Recurring ACH Setup for a Lead. A valid LeadTokenDataObject and a LeadACHGroupID is required
for this call.
 <OperationContract()>
 Function LeadACHGroup_Delete(ByVal LeadToken As LeadTokenDataObject, ByVal LeadACHGroupID As
Integer) As WSGenericResult

LeadACHGroupObject

FieldName DataType

LeadACHGroupID Int - Unique ID (system generated)

40

ACHGroupID nvarchar - From ACHGroups Table

Amount money

ACHBankAccountID Int - Identifies the bank account prevously
added

StartDate Datetime - date for first debit

ResponseErrorDescription used to return any errors

LeadACHOneTime_Get

Returns the list of OneTime ACH Setup for a Lead. A valid LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadACHOneTime_Get(ByVal LeadToken As LeadTokenDataObject) As LeadACHOneTimeObject()

LeadACHOneTime_Set

Updates a collection of OneTime ACH Setup for a Lead using the following LeadACHOneTimeObject. A valid
LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadACHOneTime_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadACHOneTime As
LeadACHOneTimeObject) As LeadACHOneTimeObject

LeadACHOneTime_Delete

Deletes a specific OneTime ACH Setup for a Lead. A valid LeadTokenDataObject and a LeadACHOneTimeID is
required for this call.
 <OperationContract()>
 Function LeadACHOneTime_Delete(ByVal LeadToken As LeadTokenDataObject, ByVal LeadACHOneTimeID As
Integer) As WSGenericResult

LeadACHOneTimeObject

FieldName DataType

LeadACHOneTimeID Int - Unique ID (system generated)

ACHGroupID nvarchar - From ACHGroups Table

Amount money

ACHBankAccountID Int - Identifies the bank account prevously
added

ScheduleDate Datetime - date of debit

ResponseErrorDescription used to return any errors

LeadACHScheduledTransactions_Get

Returns a list of the next 12 ACH transactions forcasted from the Recurring and OneTime Setup for a Lead. A valid
LeadTokenDataObject and a LeadACHOneTimeID is required for this call.
 <OperationContract()>

41

 Function LeadACHScheduledTransactions_Get(ByVal LeadToken As LeadTokenDataObject) As
LeadACHScheduledTransactionsObject()

LeadACHScheduledTransactionsObject

FieldName DataType

DebitDate Datetime

Amount money

DebitType nvarchar

EnteredBy nvarchar

LeadACHOneTimeID int

LeadACHGroupID int

ACHBankAccountID int

ResponseErrorDescription used to return any errors

LeadBankAccounts_Getlist

Returns the bank accounts for Lead to be used for ACH added via AddLeadBankAccount. Requires a LeadToken and
returns the BankAccountObject.
 <OperationContract()>
 Function LeadBankAccounts_GetList(ByVal LeadToken As LeadTokenDataObject) As BankAccountObject()

BankAccountObject

FieldName DataType

ACHBankAccountID Integer

BankAccountType String

BankName String

BankRoutingNumber String

BankAccountNumber String

ResponseErrorDescription used to return any errors

LeadBankAccount_Delete

Will allow deleting a bank account as long as its not linked to a recurring or one time setup. Requires LeadToken and
ACHBankAccountID. Retursn the WSGenericResult.
 <OperationContract()>
 Function LeadBankAccount_Delete(ByVal LeadToken As LeadTokenDataObject, ByVal ACHBankAccountID
As Integer) As WSGenericResult

RequestCreditReportXML

Submits the credit report request, saves it to the database, and returns a WSGenericResult object with the XML as the
value. A valid CBRRequestDataObject is required for this call. A valid ClientID would be used for a Client Credit Report

42

or LeadID for a Lead Credit Report. To also link the Coapp also pass a CoAppID. Minimum columns required are
notated with an *. To make a request for a co-applicant, include the applicant as Debtor1 and the co-applicant as
Debtor2. Minimum columns required when including Debtor2 are notated with **.
 <OperationContract()>
 Function RequestCreditReportXML(ByVal Request As ICCOCore.CBRRequestDataObject) As WSGenericResult

CBRRequestDataObject

FieldName DataType

ClientID int

LeadID int

CoAppID int

CreditReportAgencyCode nvarchar(2) - only supporting "EQ" currently

Debtor1Alias1FirstName* nvarchar

Debtor1Alias1MiddleName* nvarchar

Debtor1Alias1LastName* nvarchar

Debtor1Alias1NameSuffix nvarchar

Debtor1SSN* nvarchar(9)

Debtor1DOB datetime

Debtor1Address1Current* nvarchar - Street number

Debtor1Address2Current* nvarchar - Street name

Debtor1Address3Current nvarchar - Street Type

Debtor1CityCurrent* nvarchar

Debtor1StateCurrent* nvarchar

Debtor1ZipCurrent* nvarchar

Debtor2Alias1FirstName** nvarchar

Debtor2Alias1MiddleName** nvarchar

Debtor2Alias1LastName** nvarchar

Debtor2SSN** nvarchar(9)

Debtor2DOB datetime

RequestCreditReportXML3 (REST Available)

Uses the information in the Token to get a credit report for a debtor.

If pass Nothing to CreditReportAgencyCode it will use the preference CBRAgency, otherwise you can pass one of the
two or five letter codes: TU = TransUnion, EQ= Equifax , EX=Experian, TUCAN= TransUnionCanada, EQCAN = Equifax
Canada

Validates the token first. Then it validates that the debtor has all the required fields filled out in the database. Creates the
CBRRequest with the debtor information from the database.

It then follows the same logic as RequestCreditReportXML in that it submits the credit report request, saves it to the
database, and returns a WSGenericResult object. You can then query the CBRAccounts or any other CBR tables, or
parse the XML document returned on your own.

43

<OperationContract()>
 Function RequestCreditReportXML3(Token As TokenDataObject, Optional CreditReportAgencyCode As

String) As WSGenericResult

In REST, you would pass the Token like this:

{ “Token” :

{
 "UserName": "yvillafweb",
 "CSRecordID": 10589,
 "CSRecordType": "Lead",
 "Token":
"A4GOC2nhCzZQa8ZEcqx7Lrc8VCBIU8BVLtAYLoXKaLYa8Ajez3PDMFYq1kPGUkvVFqUiY55b7Biu5sqP9tmgXE
N64whsSAGbqX/wGBI/hOm00FOhhgRXwZVuA81Sk6yLOCABiQsGBJ237/isa/9M18Zvn7JUWxFuhvymyeRouadX9
9rd7EW4VpwtAcvlMaMLpOW0LTq4EUVSTf5pr39PB2MlIn/FJKgsS7ctQsR9UtjvG+cUlH+mpi46YIBq3tS/YhBl
QAb1QM0fYAi+n3g=="
}

}

LeadNONDMP_Get

Returns the list of NonDMP Accounts for a Lead. LeadToken is required.
 <OperationContract()>
 Function LeadNONDMP_Get(ByVal LeadToken As LeadTokenDataObject) As LeadNonDMPAccountDataObject()

LeadNONDMP_Set

Adds a NonDMP Account for a Lead. LeadToken is required
 <OperationContract()>
 Function LeadNONDMP_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadNonDMPAccounts As
LeadNonDMPAccountDataObject()) As LeadNonDMPAccountDataObject()

LeadNONDMP_Delete

Deletes a NonDMP Account for a Lead. LeadToken and NDMPClientCredID is required.
 <OperationContract()>
 Function LeadNONDMP_Delete(ByVal LeadToken As LeadTokenDataObject, ByVal NDMPClientCredID As
Integer) As WSGenericResult

LeadNonDMPAccountDataObject

FieldName DataType

NDMPClientCredID Int - Unique ID (system generated)

CreditorID Int - must be in Creditors Table

CreditorAlias nvarchar(250) - must be in CreditorAlias
Table and match the CreditorID

44

AccountNumber nvarchar(50)

OrigDebt money

OrigMonthly money

OrigAPR decimal(11,9)

Comments nvarchar(255)

ResponseErrorDescription used to return any errors

AccountRemoveReasonID int - must be in RemoveReason Table

UserDefined1 nvarchar(50)

UserDefined2 nvarchar(50)

UserDefined3 nvarchar(50)

LeadMoveAccountDMPorNonDMP

Moves a DMP account to NonDMP or NonDMP to DMP Account. Requires LeadToken and either ClientCredID or
NDMPClientCredID. If ClientCredID is used then the AccountRemoveReasonID is required. That can be found in
AccountRemoveReasons
 <OperationContract()>
 Function LeadMoveAccountDMPorNonDMP(ByVal LeadToken As LeadTokenDataObject, Optional ByVal
ClientCredID As Nullable(Of Integer) = Nothing, Optional ByVal NDMPClientCredID As Nullable(Of Integer)
= Nothing, Optional ByVal AccountRemoveReasonID As Nullable(Of Integer) = Nothing) As WSResponse

LeadDMPProgramInfoGet

Returns the Monthly and Initial Fee Information for the Lead.. LeadToken is required
 <OperationContract()>
 Function LeadDMPProgramInfoGet(ByVal LeadToken As LeadTokenDataObject) As LeadDMPProgramInfoGet

LeadDMPProgramInfoGet

FieldName DataType

ResponseErrorDescription used to return any errors

InitialContributionBalance money

InitialContributionPayment money

MonthlyContributionPayment money

FirstPaymentAmount money - includes Creditor Payments,
Monthly and Initial Fee

RecurringPaymentAmount money - includes Creditor Payments and
Monthly Fee

LeadClientAccomplish_Get

Returns the list of Goals that the Lead has given. LeadToken is required
 <OperationContract()>
 Function LeadClientAccomplish_Get(ByVal LeadToken As LeadTokenDataObject) As AccomplishObject()

45

LeadClientAccomplish_Set

Set the list of Goals for the Lead. LeadToken is required.
 <OperationContract()>
 Function LeadClientAccomplish_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadClientAccomplish
As AccomplishObject()) As AccomplishObject()

LeadClientAccomplish_Delete

Deletes the Accomplish specified. LeadToken and DebtorAccomplishID are required.
 <OperationContract()>
 Function LeadClientAccomplish_Delete(ByVal LeadToken As LeadTokenDataObject, ByVal DebtorAccomplishID
As Integer) As WSGenericResult

AccomplishObject

FieldName DataType

DebtorAccomplishID Int - Unique ID (system generated)

Accomplish nvarchar(50) - must be in Accomplish Table

ResponseErrorDescription used to return any errors

LeadClientActionPlan_Set

Ability to set the Action Plan Issue and Goal Notes. LeadToken is required

LeadClientActionPlan_Get

Ability to return the Action Plan Issue and Goal Notes. LeadToken is required

LeadClientActionPlanObject

FieldName DataType

ClientIssueNotes nvarchar(1000)

ClientGoalNotes nvarchar(1000)

ResponseErrorDescription used to return any errors

LeadCoAppDataObject_Get

Ability to return all the Coapps linked to a Lead. LeadToken is required

LeadCoAppDataObject_Set

Ability to add a CoApp to a Lead. LeadToken is required.

46

CoAppsDataObject

FieldName DataType

CoAppID Int - Unique ID (system generated)

CoAppFirst nvarchar(50) - required

CoAppLast nvarchar(50) - required

CoAppDOB smalldatetime

CoAppSSN nvarchar(14)

CoAppEmail nvarchar(50)

IsSpouse True/False

Relationship nvarchar(50) - Must be in RelationshipTypes
Table

CoGender M/F

CoAppEmployed True/False

CoAppEmployer nvarchar(50)

CoAppHomePhone nvarchar(50)

CoAppWorkPhone nvarchar(50)

CoAppOtherPhone nvarchar(25)

ResponseErrorDescription used to return any errors

CoAppOccupationCategoryID integer

CoAppActive True/False - can only be set with the call
LeadChangeCoAppActive

IsDefault True/False

CoAppAddress1 nvarchar(100)

CoAppAddress2 nvarchar(100)

CoAppCity nvarchar(50)

CoAppState nvarchar(30)

CoAppZip nvarchar(15)

CoAppEmploymentStatus Nvarchar (50) – must be a choice in the
NFCC_EmploymentStatus table

LeadChangeCoAppActive

Requires LeadToken, CoAppID, and NewActiveStatus (True/False). Returns WSGenericResult. A CoApp will not be
able to be marked Inactive if they are linked to Accounts or Bank Accounts.

Budget Scenarios
ScenarioID parameter
When retrieving budget information, you can use the ScenarioID to pick a specific financial scenario. You can also use

the following negative values to pick a particular type of scenario:

47

 0 = Look for Original, and if one doesn't exist, create one
-1 = Look for Actual
-2 = Look for Proposed

AddLeadFinancialScenario

Add the Proposed or Original Scenario for the Budget. This will return the ScenarioID to be used in subsequent calls.
LeadToken is required.
 <OperationContract()>
 Function AddLeadFinancialScenario(ByVal LeadToken As LeadTokenDataObject, ByVal
FinancialScenarioObject As FinancialScenarioObject) As WSResponse

FinancialScenarioObject

FieldName DataType

ScenarioID Int - Unique ID (system generated)

ScenarioName nvarchar(255)

OriginalBudget True/False

ProposedBudget True/False

ResponseErrorDescription used to return any errors

LeadIncomeScenario_Get

Returns Income details for a specific Financial Scenario. LeadToken, ScenarioID are required
 <OperationContract()>
 Function LeadIncomeScenario_Get(ByVal LeadToken As LeadTokenDataObject, ByVal ScenarioID As
Integer) As LeadIncomeDataObject()

LeadIncomeScenario_Set

Add Income details for a specific Financial Scenario. LeadToken, ScenarioID are required and would be sent with a
LeadIncomeDataObject
 <OperationContract()>
 Function LeadIncomeScenario_Set(ByVal LeadToken As LeadTokenDataObject, ByVal ScenarioID As
Integer, ByVal LeadIncomes As LeadIncomeDataObject()) As LeadIncomeDataObject()

LeadBudgetScenario_Get

Returns Budget details for a specific Financial Scenario. LeadToken, ScenarioID are required
 <OperationContract()>
 Function LeadBudgetScenario_Get(ByVal LeadToken As LeadTokenDataObject, ByVal ScenarioID As
Integer) As LeadBudgetDataObject()

LeadBudgetScenario_Set

Add Budget details for a specific Financial Scenario. LeadToken, ScenarioID are required and would be sent with a
LeadBudgetDataObject
 <OperationContract()>
 Function LeadBudgetScenario_Set(ByVal LeadToken As LeadTokenDataObject, ByVal ScenarioID As
Integer, ByVal LeadBudget As LeadBudgetDataObject()) As LeadBudgetDataObject()

48

LeadAssetsScenario_Get

Returns Asset details for a specific Financial Scenario. LeadToken, ScenarioID are required
 <OperationContract()>
 Function LeadAssetsScenario_Get(ByVal LeadToken As LeadTokenDataObject, ByVal ScenarioID As
Integer) As LeadClientAssetsDataObject()

LeadAssetsScenario_Set

Add Asset details for a specific Financial Scenario. LeadToken, ScenarioID are required and would be sent with a
LeadClientAssetsDataObject
 <OperationContract()>
 Function LeadAssetsScenario_Set(ByVal LeadToken As LeadTokenDataObject, ByVal ScenarioID As
Integer, ByVal LeadAssets As LeadClientAssetsDataObject()) As LeadClientAssetsDataObject()

LeadLiabilitiesScenario_Get

Returns Liability details for a specific Financial Scenario. LeadToken, ScenarioID are required
 <OperationContract()>
 Function LeadLiabilitiesScenario_Get(ByVal LeadToken As LeadTokenDataObject, ByVal ScenarioID As
Integer) As LeadClientLiabilitiesDataObject()

LeadLiabilitiesScenario_Set

Add Liability details for a specific Financial Scenario. LeadToken, ScenarioID are required and would be sent with a
LeadClientLiabilitiesDataObject.

<OperationContract()>
 Function LeadLiabilitiesScenario_Set(ByVal LeadToken As LeadTokenDataObject, ByVal ScenarioID As
Integer, ByVal LeadAssets As LeadClientLiabilitiesDataObject()) As LeadClientLiabilitiesDataObject()

MarkBudgetScenarioAsActual

Will mark the specified ScenarioID as actual. This should be the last call when doing any Financial calls. It requires
LeadToken and ScenarioID and WSReponse is returned.
 <OperationContract()>
 Function MarkBudgetScenarioAsActual(ByVal Leadtoken As LeadTokenDataObject, ByVal ScenarioID As
Integer) As WSResponse

Budget Calls

Income_Get (REST Only)
 <OperationContract()>
 Public Function Income_Get(ByVal Token As TokenDataObject, Optional ScenarioID As Integer = 0) As

String

Returns: Array of IncomeDataObject

49

Expenses_Get (REST Only)
 <OperationContract()>
 Public Function Expenses_Get(ByVal Token As TokenDataObject, Optional ScenarioID As Integer = 0) As

String

Returns: Array of BudgetDataObject

Assets_Get (REST Only)
 <OperationContract()>
 Public Function Assets_Get(ByVal Token As TokenDataObject, Optional ScenarioID As Integer = 0) As

String

Returns: Array of AssetsDataObject

Liabilities_Get (REST Only)
 <OperationContract()>
 Public Function Liabilities_Get(ByVal Token As TokenDataObject, Optional ScenarioID As Integer = 0)

As String

Returns: Array of LiabilitiesDataObject

FixedSpending_Get (REST Only)
 <OperationContract()>
 Public Function FixedSpending_Get(ByVal Token As TokenDataObject, Optional ScenarioID As Integer = 0)

As String

Returns: Array of BudgetDataObject

DiscretionarySpending_Get (REST Only)
 <OperationContract()>
 Public Function DiscretionarySpending_Get(ByVal Token As TokenDataObject, Optional ScenarioID As

Integer = 0) As String

Returns: Array of BudgetDataObject

LeadIncome_Set

Updates a collection of income entries in the Budget using the following LeadIncomeDataObject. A valid
LeadTokenDataObject is required.
 <OperationContract()>
 Function LeadIncome_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadIncomes As
LeadIncomeDataObject()) As LeadIncomeDataObject()

LeadIncome_Get

Returns the data stored for the following dataobject. A valid LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadIncome_Get(ByVal LeadToken As LeadTokenDataObject) As LeadIncomeDataObject()

50

LeadIncomeDataObject

FieldName DataType

IncomeName From IncomeCategories Catalog

IncomeValue money - CreditSoft Calculated - do not pass

Frequency nvarchar(50) - From BudgetFrequencies
Catalog

FrequencyAmount money

Comments nvarchar(255)

LeadAssets_Set (REST Available)

Updates a collection of asset entries in the Budget using the following LeadClientAssetsDataObject. A valid
LeadTokenDataObject is required.
 <OperationContract()>
 Function LeadAssets_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadAssets As
LeadClientAssetsDataObject()) As LeadClientAssetsDataObject()

LeadAssets_Get (REST Available)

Returns the data stored for the following dataobject. A valid LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadAssets_Get(ByVal LeadToken As LeadTokenDataObject) As LeadClientAssetsDataObject()

LeadClientAssetsDataObject

FieldName DataType

AssetName From AssetCategories Catalog

AssetValue money

LeadLiabilities_Set (REST Available)

Updates a collection of liabilities entries in the Budget using the following LeadClientLiabilitiesDataObject. A valid
LeadTokenDataObject is required.
 <OperationContract()>
 Function LeadLiabilities_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadLiabilitiesList
As LeadClientLiabilitiesDataObject()) As LeadClientLiabilitiesDataObject()

LeadLiabilities_Get (REST Available)

Returns the data stored for the following dataobject. A valid LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function LeadLiabilities_Get(ByVal LeadToken As LeadTokenDataObject) As
LeadClientLiabilitiesDataObject()

LeadClientLiabilitiesDataObject

51

FieldName DataType

LiabilityName From LiabilityCategories Catalog

LiabilityValue money

ExpenseCategories_Set

Updates a collection of expense entries in the Budget using the following LeadBudgetDataObject. A valid
LeadTokenDataObject is required.

 <OperationContract()>
 Function ExpenseCategories_Set(ByVal LeadToken As LeadTokenDataObject, ByVal LeadBudget As
LeadBudgetDataObject()) As LeadBudgetDataObject()

FixedSpending_Get

Returns the data stored for the following dataobject for all categories marked as Fixed Spending. A valid
LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function FixedSpending_Get(ByVal LeadToken As LeadTokenDataObject) As LeadBudgetDataObject()

DiscretionarySpending_Get

Returns the data stored for the following dataobject for all categories marked as Discretionary Spending. A valid
LeadTokenDataObject is required for this call.
 <OperationContract()>
 Function DiscretionarySpending_Get(ByVal LeadToken As LeadTokenDataObject) As
LeadBudgetDataObject()

LeadBudgetDataObject

FieldName DataType

Category From FixedSpendingCategories or
DiscretionarySpendingCategories Catalog

Subcategory From FixedSpendingCategories or
DiscretionarySpendingCategories Catalog

BudgetAmount money - CreditSoft Calculated - do not pass

Frequency nvarchar(50) - From BudgetFrequencies
Catalog

FrequencyAmount money

Comments nvarchar(255)

Other Lead Calls

52

LeadSetHardshipLevel

Specifies the CSP Hardship Level for the Lead. This call should be done after all the accounts are added. This call only
works with CSP configured on the database and will update the account payments and APR to the appropriate CSP Tier
1,2,3 or Call to Action/Hardship based on the creditor configuration. LeadToken and HardshipLevel (F,G, H) are
required.
 <OperationContract()>
 Function LeadSetHardshipLevel(ByVal LeadToken As LeadTokenDataObject, ByVal HardshipLevel As
String) As WSResponse

LeadSetSSN

Requires LeadToken, SSN, with an optional CoAPPID. Returns the WSResponse Object. This call confirms that the
SSN doesn't already exist for a Lead, Client, or CoAPP before updating the SSN.
 <OperationContract()>
 Function LeadSetSSN(ByVal LeadToken As LeadTokenDataObject, ByVal SSN As String, Optional ByVal
CoAppID As Nullable(Of Integer) = Nothing) As WSResponse

AddLeadNote

Requires LeadToken and Notes object. Returns WsResponse with the RecordID
 <OperationContract()>
 Function AddLeadNote(ByVal LeadToken As LeadTokenDataObject, ByVal NoteInfo As Notes) As
WSResponse

NotesObject

FieldName DataType

UserID nvarchar(20)

NoteDate Datetime

Note nvarchar(max)

ConvertLeadToClient (REST Available)

Allows the Lead to be converted to a Client as long as the Lead Conversion Requirement is met. Requires LeadToken
and returns WSResponse.
 <OperationContract()>
 Function ConvertLeadToClient(ByVal LeadToken As LeadTokenDataObject) As WSResponse

ConvertLeadtoClientValidation (REST Available)

Allows to check if the lead can be converted by checking the Lead Conversion Requirement. Requires LeadToken and
returns WSGenericResult
 <OperationContract()>
 Function ConvertLeadToClientValidation(ByVal LeadToken As LeadTokenDataObject) As
WSGenericResult

53

LeadWaiveOrLowerFee

Requires a LeadToken and a OverrideFeeObject (all fields are required). Returns WSReponse with the ClientCredID for
the unique Fee as the RecordID when successful.
 <OperationContract()>
 Function LeadWaiveOrLowerFee(ByVal LeadToken As LeadTokenDataObject, ByVal FeeObject As
OverrideFeeObject) As WSResponse

OverrideFeeObject

FieldName DataType

FeeCreditorID Int - Default Creditor Fee CreditorID

NewFeeAmount money

ChangeFeeReasonID Int - See ChangeFeeReason Table

AccountStatus nvarchar(20) - See AccountStatus Table

FeeChangeDate Datetime

FeeChangeUser nvarchar(20)

ResponseErrorDescription used to return any errors

ChangeLeadStatus

Requires a LeadToken, NewStatus, Note, and UserID. Returns WSGenericResult. NewStatus must be a valid
LeadStatus but not CONVERTED. UserID must be a valid User in Settings.

<OperationContract()>
 Function ChangeLeadStatus(ByVal LeadToken As LeadTokenDataObject, ByVal NewStatus As String,
ByVal Note As String, ByVal UserID As String) As WSGenericResult

GetDebtorHardshipScenarios
This can be used for Leads or Clients and requires a Token (note NOT a LeadToken) and will return an array of

AccountHardshipObject

<OperationContract()>
 Function GetDebtorHardshipScenarios(ByVal Token As TokenDataObject) As AccountHardshipObject()

AccountHardshipObject

FieldName DataType

DebtorID Int

DebtorType Lead or Client

LeadClientCredID Int – If returning Lead Account

ClientCredID Int – If returning Client Account

54

Balance Decimal

IsChargedOff Boolean

StandardAmount Decimal - DMP Payment

StandardAPR Decimal – DMP APR

Tier1Amount Decimal - Tier 1 Payment

Tier1APR Decimal – Tier 1 APR

Tier1Allowed Boolean – whether or not the creditor allows
Tier1

Tier2Amount Decimal - Tier 2 Payment

Tier2APR Decimal – Tier 2 APR

Tier2Allowed Boolean – whether or not the creditor allows
CTA or CSP Tier 2

Tier3Amount Decimal - Tier 3 Payment

Tier3APR Decimal – Tier 3 APR

Tier3Allowed Boolean – whether or not the creditor allows
CTH or CSP Tier 3

LTFBAAmount Decimal - LTFB A Payment

LTFBANewBalance Decimal - LTFB A Reduced Balance

LTFBAAllowed Boolean – whether or not the creditor allows
LTFB A

LTFBCAmount Decimal - LTFB C Payment

LTFBCNewBalance Decimal - LTFB C Reduced Balance

LTFBCAllowed Boolean – whether or not the creditor allows
LTFB C

ExtendedTermAmount Decimal - Extended Payment

ExtendedTermAPR Decimal – Extended APR

ExtendedTermAllowed Boolean – whether or not the creditor allows
Extended

ResponseErrorDescription used to return any errors

55

Finding Creditors

FindCreditors (REST Available)

Returns a list of Creditors that match the account number and creditor name passed. Columns returned: CreditorID,
CreditorAlias, MinimumPercent, PercentOf, DefaultSettlementPercentage 26540
 <OperationContract()>
 Function FindCreditors(ByVal AccountNumber As String,
 ByVal CreditorName As String) As WSCreditorResult()

FieldName DataType

AccountNumber nvarchar(50)

CreditorName nvarchar(50)

OUTPUT: Array of WSCreditorResult

WSCreditorResult

<DataContract()> _
Public Class WSCreditorResult
 <DataMember()> _
 Public CreditorID As Integer = -1

 <DataMember()> _
 Public CreditorAlias As String = String.Empty

 <DataMember()> _
 Public MinimumPercent As Nullable(Of Decimal)

 <DataMember()> _
 Public PercentOf As Integer

 <DataMember()> _
 Public DefaultSettlementPercentage As Nullable(Of Decimal)

End Class

FindAccountConcessions

Returns the first CreditorID that match the account number and creditor name passed, if no Creditor matches it will pass
the Generic CreditorID specified in the Administration Console.

 <OperationContract()>
 Function FindAccountConcessions(ByVal AccountNumber As String,
 ByVal CreditorName As String, ByVal Balance As Decimal) As WSAccountConcessionsResult

Columns returned: CreditorID, MonthlyPayment, Reduced APR, CreditorAlias 26944

FieldName DataType

AccountNumber nvarchar(50)

56

CreditorName nvarchar(50)

Balance money

INPUT: AccountNumber, CreditorName, Balance

OUTPUT: WSAccountConcessionsResult

WSAccountConcessionsResult

<DataContract()> _
Public Class WSAccountConcessionsResult
 <DataMember()> _
 Public CreditorID As Integer = -1

 <DataMember()> _
 Public CalculatedPayment As Nullable(Of Decimal)

 <DataMember()> _
 Public ReducedAPR As Nullable(Of Decimal)

 <DataMember()> Public ErrorDescription As String = String.Empty

<DataMember()>
 Public CreditorAlias As String = String.Empty

 Public Sub New()

 End Sub

End Class

AddCreditor
 <OperationContract()>
 Function AddCreditor(ByVal WebUserInfo As UserDataObject, ByVal CreditorInfo As CreditorObject)
As WSResponse

INPUT: WebUserInfo as UserDataObject, CreditorInfo as CreditorObject

OUTPUT: WSResponse with the new CreditorID as the RecordID

CreditorObject

FieldName DataType

Name nvarchar(250)

Address1 nvarchar(255)

Address2 nvarchar(100)

City nvarchar(50)

State nvarchar(30)

Zip nvarchar(15)

Phone nvarchar(25)

CreditorType nvarchar(20) - See CreditorTypes Table

57

58

Lead Web Services Catalogs
In order to populate some fields within the Lead Web Service a developer must map their configuration choices with the
configuration options from Settings. The following calls can be used to return the list of configuration settings.

The following calls will return the WSGenericResult dataobject which returns the columns ID and Value. The ID must be
used when submitting information in web service calls.

• DebtorBillStatus_GetList

• DMPReasons_GetList

• DebtTypes_GetList

• DelinquencyStatus_GetList

• IncomeCategories_GetList - categories marked Show for Enrollment

• AssetCategories_GetList - categories marked Show for Enrollment

• BudgetFrequencies_GetList - categories marked Show for Enrollment

• LiabilityCategories_GetList - categories marked Show for Enrollment

• DMPDebtRange_GetList

• CreditorsForEnrollment_GetList - external creditors marked Use For Enrollment, Active, Use for Internet -
limited to 15000 creditors

• AccomplishCategories_GetList

The following calls will return the CategoriesDataObject dataobject which returns the columns Category, SubCategory,
and SubCategoryDescription. The Category and SubCategory must be used when submitting information in web service
calls.

• FixedSpendingCategories_GetList - categories marked Show for Enrollment and Category Type = 'F'

• DiscretionarySpendingCategories_GetList - - categories marked Show for Enrollment and Category Type =
'D'

59

Client Calls

FindClients (REST Available)

Returns a list of clients for the specified Sales Agent. The SalesForceID is required by default per database. To make
the SalesForceID not required please contact Training.
 <OperationContract()>
 Function FindClients(ByVal SSN As String, ByVal SalesForceID As Nullable(Of Integer)) As
WSClientSearchResult()

Input Parameters DataType

SSN nvarchar(14)

SalesForceID integer - From SalesForce Table

Columns in Result List DataType

ClientID int

FirstName nvarchar(50)

LastName nvarchar(50)

OUTPUT: Array of WSClientStatusResult

WSClientStatusResult

<DataContract()> _
Public Class WSClientStatusResult
 <DataMember()> _
 Public ClientID As Integer = -1

 <DataMember()> _
 Public ClientStatus As String = String.Empty

 <DataMember()> _
 Public CloseReason As String = String.Empty

End Class

FindClientStatus (REST Available)

Returns a list of clients and their current status for the specified Sales Agent. The SalesForceID is required by default
per database. To make the SalesForceID not required please contact Training.
 <OperationContract()>
 Function FindClientStatus(ByVal ClientID As Nullable(Of Integer), ByVal SalesForceID As
Nullable(Of Integer)) As WSClientStatusResult()

Input Parameters DataType

ClientID int

SalesForceID integer - From SalesForce Table

60

Columns in Result List DataType

ClientID int

ClientStatus nvarchar(20)

CloseReason nvarchar(5)

OUTPUT: Array of WSClientStatusResult

WSClientStatusResult

<DataContract()> _
Public Class WSClientStatusResult
 <DataMember()> _
 Public ClientID As Integer = -1

 <DataMember()> _
 Public ClientStatus As String = String.Empty

 <DataMember()> _
 Public CloseReason As String = String.Empty

 Public Sub New()

 End Sub

End Class

FindReceiptHistory

Returns a list of receipts for a client for the date range specified. Leave ClientID as nothing to return all clients for the
specified Sales Agent. The SalesForceID is required by default per database. To make the SalesForceID not required
please contact Training.
 <OperationContract()>
 Function FindReceiptHistory(ByVal ClientID As Nullable(Of Integer),

 ByVal SalesForceID As Nullable(Of Integer),

 ByVal StartDate As Nullable(Of Date),

 ByVal EndDate As Nullable(Of Date)) As WSClientReceiptHistoryResult()

INPUT:

Input Parameters DataType

ClientID int

SalesForceID integer - From SalesForce Table

StartDate DateTime (nullable)

EndDate DateTime (nullable)

Columns in Result List DataType

ClientID int

DateReceived Datetime

61

ReceiptAmount Currency

PaymentType nvarchar(10)

NSF True/False

OUTPUT: Array of WSClientReceiptHistoryResult

WSClientReceiptHistoryResult

<DataContract()> _
Public Class WSClientReceiptHistoryResult
 <DataMember()> _
 Public ClientID As Integer = -1

 <DataMember()> _
 Public DateReceived As Nullable(Of Date)

 <DataMember()> _
 Public ReceiptAmount As Nullable(Of Decimal)

 <DataMember()> _
 Public PaymentType As String = String.Empty

 <DataMember()> _
 Public NSF As Nullable(Of Boolean)

 Public Sub New()

 End Sub
End Class

AttachDocumentToClient (REST Available)
Adds a Task Note to a Client and attaches the Document specified.

<OperationContract()>
 Public Function AttachDocumentToClient(ByVal ClientID As Integer, ByVal DocumentName As String,

 ByVal Document As Byte(), Optional DocumentType As String = Nothing) As String28715

FieldName DataType

ClientID int - must exist in database

DocumentName String Name of Actual file including the
extension

Document String This will be a byte array (Byte()) that
will contain the contents of the file to be
attached to the Task.

DocumentType String Refers to the DocumentTypes enum
– can be null

62

AddClientIssue (REST Available)

Creates a Task for the Client for the specified category. If no categoryid is passed the Default Category will be used. The
User and Department Assignment will follow the Task Category Setup.
 <OperationContract()>
 Function AddClientIssue(ByVal ClientID As Integer, ByVal IssueSummary As String, ByVal
IssueCategoryID As Nullable(Of Integer), Optional ByVal DateCreated As Nullable(Of Date) = Nothing,
Optional ByVal Status As String = Nothing) As WSResponse

FieldName DataType

ClientID int - must exist in database

IssueSummary nvarchar(2000)

IssueCategoryID int - from IssueCategories Table

DateCreated datetime

Status nvarchar(20) - must exist in the database -
Pass nothing to use the Default Task
Status

User Related Calls

ValidateDebtorUserLogin
 <OperationContract()>
 Function ValidateDebtorUserLogin(ByVal UserInfo As UserDataObject) As UserValidationObject

INPUT: UserInfo as UserDataObject

OUTPUT: UserValidationObject

FieldName DataType

DebtorID Integer of found Lead or ClientID

DebtorType string - Lead or Client

Status string (Invalid, Reset, Locked, Closed,
Valid)

ResponseErrorDescription string

Email string - Lead or Client email address

UserValidationObject

<DataContract()>
Public Class UserValidationObject
 <DataMember()> Public DebtorID As Integer
 <DataMember()> Public DebtorType As String
 <DataMember()> Public Status As String
 <DataMember()> Public ResponseErrorDescription As String

63

 <DataMember()> Public Email As String

 Public Sub New()
 End Sub

End Class

DebtorChangePassword

This will allow for changing the password as long as you have a valid Username and Password.

 <OperationContract()>
 Function DebtorChangePassword(ByVal UserInfo As UserDataObject, ByVal NewPassword As String) As
WSGenericResult

INPUT: UserInfo as UserDataObject, NewPassword

OUTPUT: WSGenericResult.

DebtorResetPassword
 <OperationContract()>
 Function DebtorResetPassword(ByVal WebUserInfo As UserDataObject, ByVal DebtorUserInfo As
UserDataObject) As WSGenericResult

INPUT: Web User UserDataObject, Debtor User UserDataObject

OUTPUT: WSGenericResult

The Web User would be a user login created in Settings > Users. This is the same as the user that companies use for
generating a Token for a Lead. The Debtor User UserDataObject would then contain the username and the new
password for the Lead/Client.

DebtorRetrieveWebByPassLogin
 <OperationContract()>
 Function DebtorRetrieveWebByPassLogin(ByVal WebUserInfo As UserDataObject, ByVal IPAddress As
String) As WSGenericResult

INPUT: Debtor User UserDataObject,,IPAddress as String

OUTPUT: WSGenericResult with the URL that could be used to redirect from one site to another.

64

Document Info Related Calls

GenerateDocumentSetandSendViaSignatureProvider (REST Available)

Processes a document set and sends it to the Signature Provider specified in Setup. Only SQL Report or Express Word
documents that generate as PDF can be used with this call.

 <OperationContract()>
 Function GenerateDocumentSetandSendViaSignatureProvider(ByVal LeadToken As LeadTokenDataObject,
ByVal DocumentSetID As Integer) As WSGenericResult

INPUT: LeadToken as LeadTokenDataObject, DocumentSetID

OUTPUT: WSGenericResult

GenerateDocumentSetandSendViaSignatureProvider2 (REST Available)

Processes a document set and sends it to the Signature Provider specified in Setup. Only SQL Report or Express Word
documents that generate as PDF can be used with this call.

<OperationContract()>
Function GenerateDocumentSetandSendViaSignatureProvider2(ByVal Token As TokenDataObject, ByVal

DocumentSetID As Integer) As WSGenericResult

INPUT: Token as TokenDataObject, DocumentSetID

OUTPUT: WSGenericResult

GenerateDocumentSetandSend (REST Available)

Processes a document set and sends it to the lead or client. The document set must have a Default Send Method set to
Email or SMS. If using Email, the lead or client must have an email address. If using SMS, the lead or client must have a
default SMS phone number that is SMS Enabled. We use the scalar function GetDebtorDefaultSMSPhone to retrieve it.

<OperationContract()>
Function GenerateDocumentSetandSend(ByVal Token As TokenDataObject, ByVal DocumentSetID As

Integer) As WSGenericResult

INPUT: Token as TokenDataObject, DocumentSetID

OUTPUT: WSGenericResult

GenerateDocumentSetOnly (REST Available)

Processes a document set and generates and stores the documents. Only SQL Report documents that generate as
PDF can be used with this call.
 <OperationContract()>
 Function GenerateDocumentSetOnly(ByVal LeadToken As LeadTokenDataObject, ByVal DocumentSetID As
Integer) As DocumentObject()

INPUT: LeadTokenDataObject, DocumentSetID

OUTPUT: DocumentObject

DocumentObject

65

FieldName DataType

DocumentName String

DocumentID Integer

DocumentHistoryID Integer

ResponseErrorDescription used to return any errors

DocumentSetName String

DateSent Datetime

eSignDocumentID String - unique ID at Signature Provider

eSignStatus String - status at Signature Provider

eSignProvider String

eSignSigningURL String

Only returned by GetDocumentsSent

Only for SignNow and ICCO Sign

GenerateDocumentSetOnlyDebtor

Processes a document set and generates and stores the documents. Only SQL Report documents that generate as
PDF can be used with this call. This can be used for Leads or Clients

<OperationContract()>
 Function GenerateDocumentSetOnlyDebtor(ByVal Token As TokenDataObject, ByVal DocumentSetID As
Integer) As DocumentObject()

INPUT: TokenDataObject, DocumentSetID

OUTPUT: DocumentObject

LeadGetDocument
 <OperationContract()>
 Function LeadGetDocument(ByVal LeadToken As LeadTokenDataObject, ByVal DocumentHistoryID As
Integer) As DocumentFileInfoObject

INPUT: LeadTokenDataObject,DocumentHistoryID for the document that is desired

OUTPUT: DocumentFileInfoObject

DocumentFileInfoObject

FieldName DataType

FileName String

FileExtension String

FileContent Bytes

DocumentHistoryID Integer

ResponseErrorDescription used to return any errors

DebtorGetDocument
Can be used for Leads or Clients

66

<OperationContract()>
 Function DebtorGetDocument(ByVal Token As TokenDataObject, ByVal DocumentHistoryID As Integer) As
DocumentFileInfoObject

INPUT: TokenDataObject,DocumentHistoryID for the document that is desired

OUTPUT: DocumentFileInfoObject

LeadGetDocumentsSent (REST Available)
 <OperationContract()>
 Function LeadGetDocumentsSent(ByVal LeadToken As LeadTokenDataObject) As DocumentObject()

INPUT: LeadToken as LeadTokenDataObject.

OUTPUT: Array of DocumentObject.

LeadCancelESignDocument
 <OperationContract()>
 Function LeadCancelESignDocument(ByVal LeadToken As LeadTokenDataObject, ByVal eSignDocumentID
As String, ByVal CancelReason As String) As WSGenericResult

INPUT: LeadToken as LeadTokenDataObject, eSignDocumentID as String, CancelReason as String

OUTPUT: WSGenericResult

GetDocumentsSent (REST Available)
Returns the documents sent to the lead or client

 <OperationContract()>
 Function GetDocumentsSent(ByVal Token As TokenDataObject) As DocumentObject()

INPUT: TokenDataObject

OUTPUT: Array of DocumentObject

GenerateAndSendSimpleEmail (REST Available)
 <OperationContract()>
 Function GenerateAndSendSimpleEmail(ByVal LeadToken As LeadTokenDataObject, ByVal DocumentSetID
As Integer) As WSGenericResult

Saved Search Calls
GetDataFromSavedSearch
The API Call GetDataFromSavedSearch allows you to execute and retrieve the results of a Saved Search. Only saved

searches added through the “Enabled Saved Search Permissions” screen can be used.

How to enable a saved search call:

1. Navigate to Settings -> API -> Preferences.

2. Click Enable Saved Search API Permissions.

3. Double click to add a Saved Search API call.

4. Navigate to Settings -> API -> API Users.

5. Click the Rest Calls Allowed button.

67

6. Look for the Saved Search API call that corresponds to the SearchID you want and check the box (e.g.

GetDataFromSavedSearch_123 if 123 is your Saved Search ID)

7. In addition, you have to always add permission to the generic GetDataFromSavedSearch call.

How to delete a saved search call:

1. Navigate to Settings -> API -> Preferences.

2. Click Delete Saved Search API Permissions.

3. Double click to delete a Saved Search API call.

<OperationContract()>
 Public Function GetDataFromSavedSearch(ByVal JSONObject As GetDataFromSavedSearchDataObject) As

String

INPUT: JSONObject as GetDataFromSavedSearchDataObject

OUTPUT: String

GetDataFromSavedSearchDataObject

FieldName DataType Example

SavedSearchID Integer 123

JSONParam String.

Used to pass the
{criteria.jp_xyz} bookmarks
with their values.

{“jp_debtorid”:”1234”,”jp_userid”:”Smith”}

The Saved Search SQL can contain bookmarks that will be replaced from the JSONParam list. The bookmarks in the

Saved Search SQL must be in the format {criteria.jp_xyz} where jp_xyz is the bookmark defined in the JSONParam.

So for example the JSON parameter called “jp_debtorid” would need to have a {criteria.jp_debtorid} bookmark in the

SQL.

Example: Finding leads by SSN
Saved search SQL:

select
 lc.ClientID as DebtorID,
 'Lead' as DebtorType,
 lc.WholeName,
 lc.LeadStatus
 from LeadClient lc
 WHERE
 dbo.EmptyToNull(CAST(DECRYPTBYKEYAUTOCERT(CERT_ID('ICCO_CERTIFICATE'),NULL,lc.SSN_Encrypted) AS NVARCHAR(MAX))) =
'{criteria.jp_ssn}'

Notice that we surround the bookmark with single quotes, since it’s a string.

API Call:

68

Lead HTTP Post

An HTTP Post can be submitted to the API to create a Lead in the CreditSoft Database. On success, the API will send the
Lead ID assigned in the HTTP response. If an error occurs and the lead cannot be saved into CreditSoft, a message will
be returned in the HTTP response.

 Fields Sent via HTTP Post
• FirstName
• LastName
• Address1
• Address2
• City
• State
• Zip
• Email
• HomePhone
• WorkPhone
• HomePhoneTime
• DebtAmount
• BillStatus
• AdvertisingID (Must be the Advertising ID from the advertising table)

69

Post Examples

The web page that will process the HTTP POSTS is API_AddLead.aspx. There will be two ways of sending information to
this page: Query String and Create HTTP POST request.

Add Lead using Query String

https://<ICCOCOREAPISITE>/API_AddLead.aspx?firstname=John&lastname=Smith&address1=1600%20pennsylvania%20
ave&address2=&city=Jonestown&state=FL&zip=99999&email=john@smith.com&homephone=9995551212&workphon
e=8995551212&homephonetime=Anytime&debtamount=50000&billstatus=skipping&advertisingid=21

 Add Lead using HTTP Post
<form name="API_AddLead" id="API_AddLead" method="POST" action="https://< ICCOCOREAPISITE
>/API_AddLead.aspx " target="cnfm">

<input type="hidden" name="__VIEWSTATE" value="" />

<input name="FirstName" type="hidden" id="FirstName" value="John" />

<input name="lastname" type="hidden" id="lastname" value="Smith" />

<input name="address1" type="hidden" id="address1" value="1600 pennsylvania ave" />

70

<input name="address2" type="hidden" id="address2" value="" />

<input name="city" type="hidden" id="city" value="Jonestown" />

<input name="state" type="hidden" id="state" value="FL" />

<input name="zip" type="hidden" id="zip" value="99999" />

<input name="email" type="hidden" id="email" value="john@smith.com" />

<input name="homephone" type="hidden" id="homephone" value="9995551212" />

<input name="workphone" type="hidden" id="workphone" value="8995551212" />

<input name="homephonetime" type="hidden" id=" homephonetime " value="1300" />

<input name="debtamount" type="hidden" id="debtamount" value="50000" />

<input name="billstatus" type="hidden" id=" billstatus " value=" oneday " />

<input name="advertisingid" type="hidden" id="advertisingid" value="21" />

</form>

 Responses
 On Success
RESULT=SUCCESS

LEADID=[CreditSoftLeadID]
On Failure
RESULT=FAILURE

ERROR=[ErrorMessage]
The possible error messages are:

Invalid Advertising ID
First Name is required
Last Name is required
Debt Amount must be numeric
Unknown error ocurred. Error Details: [ErrorDetails]

mailto:john@smith.com

71

Outlook Add-In Objects
OutlookAddInServiceGeneric_Result
Used by the most api calls from Outlook Add-In as return class it contains the responseErrorDescription and the data

FieldName DataType

responseErrorDescription string

data object

OutlookAddInService_Result
Used by the ProcessMailItem call as data in OutlookAddInServiceGeneric_Result

FieldName DataType

ViewTaskURL string

ViewLeadURL string

ViewClientURL string

ViewCreditorURL string

UserID string

Product string

lblFrom string

txtFrom string

IssueID int?

lblCompany string

txtCustomerID string

txtCustomer string

txtStatus string

txtCustomerIDTag string

txtStatusForeColor string

txtStatusBackColor string

txtStatusForeColorHtml string

txtStatusBackColorHtml string

tsbRecipientDetails string

tsbViewIssues string

72

txtCustomerInactiveVisible bool

txtContact string

txtContactID string

txtContactIDTag string

txtContactInactiveVisible bool

txtIssue string

tsmiOther_UntagEmailVisible bool

tsmiOther_UntagConversationVisible bool

tsbAddToIssueEnabled bool

tsbAddToIssueIEnabled bool

tsbIssueDetailEnabled bool

tsbCreateIssueEnabled bool

tsbCreateIssueIVisible bool

tsbIssueDetailsVisible bool

tsbCreateAdditionalIssueIEnabled bool

txtIssueStatus string

txtIssueStatusTag string

txtIssueCategory string

txtAssignedUserID string

txtIssueSummary string

IssueRecordName string

txtIssueStatusForeColor string

txtIssueStatusBackColor string

txtIssueStatusForeColorHtml string

txtIssueStatusBackColorHtml string

txtIssueClientAccountInfo string

tsbTagOnlyEnabled bool

tsbIssueDetailsEnabled bool

btnChooseObjectVisible bool

73

txtFromTag string

GetItemsFromEmail DataTable

ChooseCustomerTable DataTable

txtCustom string

txtCustomVisible bool

isItemTaggedWithIssueID bool

taskString string

IssueRecordType string

IssueRecordID string

Outlook Add-In Calls
AddIssueNoteToIssue (Rest Available)
Create a file of type .MSG with the mail and attach that file as a note to the issueId

<OperationContract()>

Public Async Function AddIssueNoteToIssue(Token As TokenDataObject, MessageID As String, MessageDateUTC As DateTime,

IssueID As Integer?, RecordID As Integer?, RecordType As String, ContactID As Integer?, ContactType As String, SenderName As

String, Subject As String, Body As String, EmailFrom As String, EmailTo As String) As Threading.Tasks.Task(Of String)

Returns a OutlookAddInServiceGeneric_Result, data is the created IssueNoteID

AddIssueWithMessage (Rest Available)
Create a new issue into the database and create a file of type MSG with the mail and attach that file as a note to that

issueID

<OperationContract()>

Public Async Function AddIssueWithMessage(Token As TokenDataObject, MessageID As String, MessageDateUTC As DateTime,

RecordID As Integer?, RecordType As String, ContactID As Integer?, ContactIDTag As String, IssueCategoryID As Integer,

SenderName As String, Subject As String, Body As String, EmailFrom As String, EmailTo As String) As Threading.Tasks.Task(Of

String)

Returns a OutlookAddInServiceGeneric_Result, data is the created IssueID

CopyMessageAppendIssueToSubject (Rest Available)
Create a copy of the message and append the issue id at the end of the subject example: Issue with DQ to Issue with DQ

[Task #12345]

<OperationContract()>

Public Async Function CopyMessageAppendIssueToSubject(Token As TokenDataObject, MessageID As String, MessageDateUTC

As DateTime, IssueID As Integer) As Threading.Tasks.Task(Of String)

Returns a OutlookAddInServiceGeneric_Result, data is a Boolean that indicates if the email has been created

74

CreateActions (Rest Available)
Retrieve the data form the stored procedure GetEmailChangeCandidates (Email WorkFlow rules)

<OperationContract()>

Public Function CreateActions(Token As TokenDataObject, IssueID As Integer?, ClientID As Integer?, LeadID As Integer?,

CreditorID As Integer?, UserID As String, EmailSubject As String,

EmailBody As String, EmailSender As String, EmailTo As String, EmailCC As String, EmailSentOn As DateTime) As String

Returns a OutlookAddInServiceGeneric_Result, data is a list with the EmailChangeMasterID and Description

FieldName DataType

EmailChangeMasterID int

Description string

ExecuteEmailChange (Rest Available)

Run the stored procedure ExecuteEmailChange that executes the selected EmailChangeMasterID

<OperationContract()>

Public Function ExecuteEmailChange(Token As TokenDataObject, ECMID As Integer?, IssueID As Integer?, ClientID As Integer?,

LeadID As Integer?, CreditorID As Integer?, UserID As String, EmailSubject As String, EmailBody As String, EmailSender As String,

EmailTo As String, EmailCC As String, EmailSentOn As DateTime?) As String

Returns a OutlookAddInServiceGeneric_Result, data is the OutputText if the values is in the update statement form the

email workflow selected

GetActiveRecords (Rest Available)

Retrieve a list of the active CSRecordType (Lead,Client,Creditor).

<OperationContract()>

Public Function GetActiveRecords(Token As TokenDataObject, RecordType As String, Filter As String) As String

Returns a OutlookAddInServiceGeneric_Result, data is a list with the following fields

For clients and leads returns

FieldName DataType

ClientID/LeadID int

WholeName string

SSN string

For Creditors returns

FieldName DataType

CreditorID int

Creditor string

75

Address1 string

City string

State string

Zip string

GetIssueCategories (Rest Available)
Retrieve a list of the active Issue Categories

<OperationContract()>

Public Function GetIssueCategories(Token As TokenDataObject) As String

Returns a OutlookAddInServiceGeneric_Result, data is a list with the following fields

FieldName DataType

CategoryID int

Category string

GetRecentIssues (Rest Available)
Retrieve a list with the recent issues

<OperationContract()>

Public Function GetRecentIssues(Token As TokenDataObject, UserID As String, RecordID As Integer?, RecordType As String) As

String

Returns a OutlookAddInServiceGeneric_Result, data is a list with the recent issues with the following fields

FieldName DataType

IssueID int

Customer string

Summary string

LastNote string

Category string

Updated Datetime

76

LinkRecipientToDBObject (Rest Available)
Link the email as Coapp or ClientContact to an Client lead or Creditor

<OperationContract()>

Public Function LinkRecipientToDBObject(Token As TokenDataObject, RecordType As String, RecordID As Integer, Email As

String, Contact As String) As String

Returns a OutlookAddInServiceGeneric_Result, data is the WholeName of the Client/Lead or Name of the Creditor

LoginOutlookAddIn (Rest Available)
Used to retrieve a TokenDataObject that is used in others api calls for Outlook add-in

<OperationContract()>

Public Function LoginOutlookAddIn(ByVal objUser As WebUserTokenDataObject) As String

Returns a TokenDataObject

ProcessMailItem (Rest Available)
Retrieve all the data needed to show the info in the Outlook Add-in window

<OperationContract()>

Public Function ProcessMailItem(Token As TokenDataObject, Optional EmailSubject As String = Nothing, Optional EmailBody As

String = Nothing, Optional EmailSender As String = Nothing, Optional EmailSenderName As String = Nothing, Optional EmailTo

As String = Nothing, Optional EmailCC As String = Nothing, Optional EmailSentOn As Nullable(Of DateTime) = Nothing,

Optional ReloadClientInfo As Boolean = True, Optional ReloadTaskInfo As Boolean = True) As String

Returns a OutlookAddInServiceGeneric_Result, data is an OutlookAddInService_Result

RemoveIssueIDTagfromItem (Rest Available)
Create a copy of the message and deletes the issue id at the end of the subject example: Issue with DQ [Task #12345] to

Issue with DQ

<OperationContract()>

Public Async Function RemoveIssueIDTagfromItem(Token As TokenDataObject, MessageID As String, MessageDateUTC As

DateTime, IssueID As Integer, Subject As String) As Threading.Tasks.Task(Of String)

Returns a OutlookAddInServiceGeneric_Result, data is a Boolean that indicates if the email has been created

Mobile App Calls

GetMobileAPIToken (Rest Only)
Returns a token that you can use to make other API calls. The IP address should be the one from the client's device

<OperationContract()>

 Public Function GetMobileAPITokenJ(UserName As String, Password As String, ByVal IPAddress As
String) As TokenDataObject

77

UserName: This is the username from the internet account of the lead or client (same as the one they use to login to

the web portal).

Password: This is the password of the lead or client (same as the one they use to login to the web portal)

IP Address: This is the mobile device IP address

LinkAccountInitiate (Rest Only)
This call allows you to start the process of either:

a) create a username for a lead, client or co-applicant

or

b) find the username and reset the password of a lead, client or co-applicant

Example JSON Body:

{

"emailorphone" : "test@test.com",

"IPAddress" : "12.12.12.12"

}

Parameter: emailorphone

The email or hone of a lead, client or co-applicant and returns a LinkID value (a GUID) that you can then pass to the

LinkAccountComplete.

You will get “User account not found” if the email address or phone is not found or there are multiple matches.

If an Email address is provided, it sends a verification code to the email. If a phone number is provided, it sends a

verification code to the phone.

Parameter: IPAddress

The forwarded IP address of the client’s device (since this API call is made by an internal server).

Returns:

A JSON object where the Value contains the LinkID.

Example of a return:

{

 "d": {

 "__type": "WSGenericResult:#ICCOCoreAPI",

 "ID": null,

 "ResponseErrorDescription": null,

 "Value": "bb06ccee-b1b3-412e-ad19-28d7c56e2c93"

78

 }

}

<OperationContract()>

 Public Function LinkAccountInitiate(emailorphone As String, IPAddress As String) As
WSGenericResult

LinkAccountComplete (Rest Only)
This is used both for LinkAccount/Registration and also for ForgotPassword functionality on a mobile app.

Example JSON body:

{

 "LinkID": "bb06ccee-b1b3-412e-ad19-28d7c56e2c93",

 "Code" : "404026",

 "NewPassword" : "doohickey",

 "IPAddress" : "12.12.12.12"

}

This call requires that you pass the following:

Parameter: LinkID

The LinkID you received from the LinkAccountInitiate.

Parameter: Code

The code received by the lead, client or co-applicant after you called LinkAccountInitiate.

Parameter: NewPassword

The new password for the account.

Returns:

A TokenDataObject that you can use for any additional API calls.

Example of a return:

{

 "d": {

 "__type": "TokenDataObject:#ICCOCoreAPI",

 "CSRecordID": 10693,

 "CSRecordType": "Client",

 "Remarks": null,

79

 "ResponseErrorDescription": null,

 "Token":

"A4GOC2nhCzZQa8ZEcqx7Lrc8TVCIU8BVLtAYLoXKaImLFs7hgWqG8XPMOZnWF/BW17MLtwwZFoT6ZpeGiXdxTMg/YAC+

KH+0KAj9xcZITgAr3xclrW/SixGHq85+lA7j2FnRS7CP0hsrGQuQmlIva6NZXwy7u788SGhRuTNgsDeykftYZcqoT7iIAwiIFQeZD

9ww4GAfbMp523cLO4Ybj2/bmMXpEb+1qqJ6pzNpvgWbnquqvkXJR3nC7dL/0F3EobjZ7O6kUgCFtYQvQWw==",

 "UserName": "test@test.com"

 }

<OperationContract()>

 Public Function LinkAccountComplete(LinkID As String, Code As String, NewPassword As String,
IPAddress As String) As TokenDataObject

GetStoredDocumentList (Rest Only)

List of documents that a user can either download or sign in the custom mobile app

<OperationContract()>

 Public Function GetStoredDocumentListJ(ByVal Token As TokenDataObject) As
WSStoredDocumentListResult()

WSStoredDocumentListResult

FieldName DataType

FileID Integer

The IssueNoteID or DocumentHistoryID
depending on the FileRepositoryType

FileRepositoryType String

IssueNotes or DocumentHistory

VirtualFullFileName String

This is the name you will need to pass to
retrieve the actual document bytes

DisplayName String

The friendly name of the document

IssueID Integer

If the document is linked to an issue this
will return the IssueID

SignedStatus String

For ICCOSign:

-1 = Error/Not found/Not applicable

 0 = Still pending for signature or rejection

80

 +1 = Rejected less than 10 minutes ago

 +2 = Rejected more than 10 minutes ago

 +3 = Signed less than 10 minutes ago

 +4 = Signed more than 10 minutes ago

For any other Electronic Signature:

0 = Still pending for signature or rejection

1 = Signed

SignatureRequestGUID String

If this is a signable document via ICCOSign
it will return the Signature Request GUID

SignatureURL String

If this is a signable document via ICCOSign
it will return the link to view or sign the
document

ResponseErrorDescription used to return any errors

GetStoredDocument (Rest Only)
Returns the document including the document bytes

 <OperationContract()>
 Public Function GetStoredDocumentJ(ByVal Token As TokenDataObject, VirtualFullFileName As

String) As WSStoredDocumentResult

WSStoredDocumentResult

FieldName DataType

DisplayName String

DocumentBytes Bytes

The bytes of the document. The
VirtualFullFileName will tell you which type
of document it is based on the extension
(.PDF, .TXT, etc…)

ResponseErrorDescription used to return any errors

GetSingleUseLoginURL (Rest Only)
Returns a single-use login URL that expires in 30 secs or after the URL is visited. The number of seconds can be modified

in API Settings under Single Use Login URL expiration in seconds.

81

The SignatureGUID parameter is optional. If passed the URL will be the one to sign the document. If not passed the URL

will be the default landing page after auto login.

<OperationContract()>
 Public Function GetSingleUseLoginURLJ(ByVal Token As TokenDataObject, IPAddress As String,

Optional SignatureRequestGUID As String = Nothing, Optional AllowLoginFromAnyIP As Boolean = False) As

WSGenericResult

The AllowLoginFromAnyIP is also optional. You can pass true to allow login from an IP address different from the one

you supplied. This could be useful if the link will be used in a device that is switching networks (rare).

Example of a JSON body for this call:

{ "Token":

 {

 "__type": "TokenDataObject:#ICCOCoreAPI",

 "CSRecordID": 10559,

 "CSRecordType": "Client",

 "Remarks": null,

 "ResponseErrorDescription": null,

 "Token":

"A4GOC2nhCzZQa8ZEcqx7Lrc8TVCBIUBVLtAYLoKaJEtoOQ2wyda5PF+rHIHI7xdi61CNqE7ZuDFOGVg8g/W7wV4UzAEHwZ0

Nd0d1gQHnsDwLk1Z+6c0R7XY5WNdKqRi0gGlwiaNIDRQbyhtVDH0L0j0T/g76j0/f/l7GNJXsT27moWbZ3/drpjzsW1Sg6Gu7

NRFiDF4dPQQYxJjMuMZM81qFfhndpNTK0HpwRjtjvZ5UsRTMrhRBV03f3kkpUqRoOUmsmr0wcR+SNA==",

 "UserName": "Rodrigo"

 },

 "IPAddress":"12.0.0.5",

 "SignatureRequestGUID": null,

 "AllowLoginFromAnyIP": true

}

	Security
	API Users

	INTERNALONLY calls
	GET vs POST Methods
	REST Calls and calls ending in J (JSON Object response)
	Tokens and token users
	Working with the legacy LeadAPIToken
	Requesting a LeadAPIToken

	Working with the new APIToken
	Requesting an APIToken

	Date and datetime formats

	Troubleshooting
	User account not found
	Response Code 415 – Unsupported Media Type
	Access is denied / 401 Unauthorized
	405 Method Not Allowed
	Invalid Lead Token
	An unsecured or incorrectly secured fault was received from the other party. See the inner FaultException for the fault code and detail.An error occurred when processing the security tokens in the message.
	Sales Force ID Not Found

	Common Postman Errors
	Mixed content error: cannot send request. The request has been blocked because it requested an insecure HTTP resource.

	Testing Framework
	WSTester.html - AJAX
	WSCreditSoftTester.exe
	Postman

	How to create your postman project
	Create your postman account and login
	Create an environment first and add the following variables:
	Create a collection and configure authorization
	Add a request called TestConnection to the collection
	Add a request called User_GetAPIToken

	Development Framework
	Quick Links to Topics
	Commonly Used Objects
	LeadClientDataObject
	WSGenericResult object
	WSResponse object

	Connection Test Calls
	About (REST Available)
	TestConnection (REST ONLY)

	Lead Related Calls
	AddLead
	AddLeadDataObject (REST Available)
	AddLeadCoApp (REST Available)
	AddLeadContactDataObject
	AddLeadBankAccount (REST Available)
	AddLeadAccount (REST Available)
	AddLeadBudget (REST Available)
	AddLeadIncome (REST Available)
	AddLeadAsset (REST Available)
	AddLeadLiability (REST Available)
	MarkOriginalBudgetScenarioAsActual (REST Available)
	AddSalesForce
	AddLeadIssue (REST Available)
	AddIssueNote
	AttachDocumentToIssue (REST Available)
	AddValidatedGlobalAccountToLead
	AddLeadCreditCard (REST Available)
	AttachDocumentToLead (REST Available)

	Lead Calls with API Token
	OBTAINING TOKENS
	User_GetLeadAPIToken
	INPUT: UserTokenDataObject
	OUTPUT: LeadTokenDataObject

	User_GetAPIToken
	INPUT: WebUserTokenDataObject
	OUTPUT: TokenDataObject

	Lead_GetAPIToken
	INPUT: UserDataObject with lead’s internet credentials
	OUTPUT: LeadTokenDataObject

	Objects used for authentication and tokens
	Objects used to request and obtain tokens
	UserDataObject
	UserTokenDataObject
	WebUserTokenDataObject

	Token objects obtained after requesting them
	LeadTokenDataObject
	TokenDataObject

	TOKENIZED CALLS
	LeadDataObject_Set, LeadDataObject_Get, LeadDataObject_Set2 & LeadDataObject_Get2
	LeadDataObject_Set [REST Available only with the J version]
	INPUT: LeadTokenDataObject, LeadClientDataObject
	OUTPUT: LeadTokenDataObject

	LeadDataObject_Get [REST Available only with the J version]
	INPUT: LeadTokenDataObject
	OUTPUT: LeadClientDataObject

	LeadDataObject_Set2 [REST Available only with the J version]
	INPUT: TokenDataObject, LeadClientDataObject
	OUTPUT: WSResponse

	LeadDataObject_Get2 [REST Available only with the J version]
	INPUT: TokenDataObject
	OUTPUT: LeadClientDataObject

	LeadQuickQuestion_Set
	LeadQuickQuestions_Get
	LeadQuickQuestionsDataObject
	LeadClientDMPReasonDataObject

	LeadAccount_Set (REST Available)
	LeadAccount_GetList (REST Available)
	DeleteLeadAccount_Set
	LeadAccountDataObject

	EstimatedProgramAmountDue_Get
	RetrieveMyInfo_Set
	RetrieveMyInfo_Get
	MyInformationDataObject
	CoAppsDataObject

	LeadCoApp_Delete
	Lead_ccProgram_Get (REST Available)
	Lead_ccProgram_Get_Result

	LeadDMPReason_Get (REST Available)
	LeadDMPReason_Set (REST Available)
	LeadDMPReason_Delete
	LeadClientDMPReasonDataObject

	GetLeadWebSignInLink
	LEAD ACH CALLS
	LeadACHGroup_Get
	LeadACHGroup_Set
	LeadACHGroup_Delete
	LeadACHGroupObject

	LeadACHOneTime_Get
	LeadACHOneTime_Set
	LeadACHOneTime_Delete
	LeadACHOneTimeObject

	LeadACHScheduledTransactions_Get
	LeadACHScheduledTransactionsObject

	LeadBankAccounts_Getlist
	BankAccountObject

	LeadBankAccount_Delete
	RequestCreditReportXML
	CBRRequestDataObject

	RequestCreditReportXML3 (REST Available)
	LeadNONDMP_Get
	LeadNONDMP_Set
	LeadNONDMP_Delete
	LeadNonDMPAccountDataObject

	LeadMoveAccountDMPorNonDMP
	LeadDMPProgramInfoGet
	LeadDMPProgramInfoGet

	LeadClientAccomplish_Get
	LeadClientAccomplish_Set
	LeadClientAccomplish_Delete
	AccomplishObject

	LeadClientActionPlan_Set
	LeadClientActionPlan_Get
	LeadClientActionPlanObject

	LeadCoAppDataObject_Set
	CoAppsDataObject

	LeadChangeCoAppActive

	Budget Scenarios
	ScenarioID parameter
	AddLeadFinancialScenario
	FinancialScenarioObject

	LeadIncomeScenario_Get
	LeadIncomeScenario_Set
	LeadBudgetScenario_Get
	LeadBudgetScenario_Set
	LeadAssetsScenario_Get
	LeadAssetsScenario_Set
	LeadLiabilitiesScenario_Get
	LeadLiabilitiesScenario_Set
	MarkBudgetScenarioAsActual

	Budget Calls
	Income_Get (REST Only)
	Expenses_Get (REST Only)
	Assets_Get (REST Only)
	Liabilities_Get (REST Only)
	FixedSpending_Get (REST Only)
	DiscretionarySpending_Get (REST Only)
	LeadIncome_Set
	LeadIncome_Get
	LeadIncomeDataObject

	LeadAssets_Set (REST Available)
	LeadAssets_Get (REST Available)
	LeadClientAssetsDataObject

	LeadLiabilities_Set (REST Available)
	LeadLiabilities_Get (REST Available)
	LeadClientLiabilitiesDataObject

	ExpenseCategories_Set
	FixedSpending_Get
	DiscretionarySpending_Get
	LeadBudgetDataObject

	Other Lead Calls
	LeadSetHardshipLevel
	LeadSetSSN
	AddLeadNote
	ConvertLeadToClient (REST Available)
	ConvertLeadtoClientValidation (REST Available)
	LeadWaiveOrLowerFee
	OverrideFeeObject

	ChangeLeadStatus
	GetDebtorHardshipScenarios
	AccountHardshipObject

	Finding Creditors
	FindCreditors (REST Available)
	OUTPUT: Array of WSCreditorResult
	WSCreditorResult

	FindAccountConcessions
	INPUT: AccountNumber, CreditorName, Balance
	OUTPUT: WSAccountConcessionsResult
	WSAccountConcessionsResult

	AddCreditor
	CreditorObject

	Lead Web Services Catalogs
	Client Calls
	FindClients (REST Available)
	OUTPUT: Array of WSClientStatusResult
	WSClientStatusResult

	FindClientStatus (REST Available)
	OUTPUT: Array of WSClientStatusResult
	WSClientStatusResult

	FindReceiptHistory
	INPUT:
	OUTPUT: Array of WSClientReceiptHistoryResult
	WSClientReceiptHistoryResult

	AttachDocumentToClient (REST Available)
	AddClientIssue (REST Available)

	User Related Calls
	ValidateDebtorUserLogin
	UserValidationObject

	DebtorChangePassword
	DebtorResetPassword
	DebtorRetrieveWebByPassLogin

	Document Info Related Calls
	GenerateDocumentSetandSendViaSignatureProvider (REST Available)
	GenerateDocumentSetandSendViaSignatureProvider2 (REST Available)
	GenerateDocumentSetandSend (REST Available)
	GenerateDocumentSetOnly (REST Available)
	DocumentObject

	GenerateDocumentSetOnlyDebtor
	LeadGetDocument
	DocumentFileInfoObject

	DebtorGetDocument
	LeadGetDocumentsSent (REST Available)
	LeadCancelESignDocument
	GetDocumentsSent (REST Available)
	INPUT: TokenDataObject
	OUTPUT: Array of DocumentObject

	GenerateAndSendSimpleEmail (REST Available)

	Saved Search Calls
	GetDataFromSavedSearch
	GetDataFromSavedSearchDataObject

	Example: Finding leads by SSN

	Lead HTTP Post
	Fields Sent via HTTP Post
	Add Lead using HTTP Post

	Outlook Add-In Objects
	OutlookAddInServiceGeneric_Result
	OutlookAddInService_Result

	Outlook Add-In Calls
	AddIssueNoteToIssue (Rest Available)
	AddIssueWithMessage (Rest Available)
	CopyMessageAppendIssueToSubject (Rest Available)
	CreateActions (Rest Available)
	ExecuteEmailChange (Rest Available)
	GetActiveRecords (Rest Available)
	GetIssueCategories (Rest Available)
	GetRecentIssues (Rest Available)
	LinkRecipientToDBObject (Rest Available)
	LoginOutlookAddIn (Rest Available)
	ProcessMailItem (Rest Available)
	RemoveIssueIDTagfromItem (Rest Available)

	Mobile App Calls
	GetMobileAPIToken (Rest Only)

	Public Function GetMobileAPITokenJ(UserName As String, Password As String, ByVal IPAddress As String) As TokenDataObject
	LinkAccountInitiate (Rest Only)

	Public Function LinkAccountInitiate(emailorphone As String, IPAddress As String) As WSGenericResult
	LinkAccountComplete (Rest Only)

	Public Function LinkAccountComplete(LinkID As String, Code As String, NewPassword As String, IPAddress As String) As TokenDataObject
	GetStoredDocumentList (Rest Only)

	List of documents that a user can either download or sign in the custom mobile app
	Public Function GetStoredDocumentListJ(ByVal Token As TokenDataObject) As WSStoredDocumentListResult()
	WSStoredDocumentListResult
	GetStoredDocument (Rest Only)
	WSStoredDocumentResult

	GetSingleUseLoginURL (Rest Only)

